6 resultados para Pisa Timss modelli valutazione matematica

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PISA assessment instruments for students’ scientific literacy in 2000, 2003 and 2006 have each consisted of units made up of a real world context involving Science and Technology, about which students are asked a number of cognitive and affective questions. This paper discusses a number of issues from this use of S&T contexts in PISA and the implications they have for the current renewed interest in context-based science education. Suitably chosen contexts can engage both boys and girls. Secondary analyses of the students’ responses using the contextual sets of items as the unit of analysis provides new information about the levels of performance in PISA 2006 Science. .Embedding affective items in the achievement test did not lead to gender/context interactions of significance, and context interactions were less than competency ones. A number of implications for context-based science teaching and learning are outlined and the PISA 2006 Science test is suggested as a model for its assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a number of years now it has been evident that the major issue facing science educators in the more developed countries of the world is the quantitative decline in enrolments in the senior secondary sciences, particularly the physical sciences, and in the number of higher achieving students applying for places in universities to undertake further studies in science. The deep malaise in school science to which these quantitative measures point has been elucidated by more qualitative studies of the students’ experience of studying science in secondary school in several of these countries (Sweden, Lindahl (2003); England, Simon and Osborne (2002); and Australia, Lyons (2005)). Remarkably concordant descriptions of these experiences can be summarized as: School science is: • transmission of knowledge from the teacher or the textbook to the students. • about content that is irrelevant and boring to our lives. • difficult to learn in comparison with other subjects Incidentally, the Australian study only involved consistently high achieving students; but even so, most of them found science more difficult than other more interesting subjects, and concluded that further science studies should be avoided unless they were needed for some career purpose. Other more representative confirmations of negative evaluations of the science curricula across Australia (and in particular states) are now available in Australia, from the large scale reviews of Goodrum, Hackling and Rennie (2001) and from the TIMSS (2002). The former reported that well under half of secondary students find the science at school relevant to my future, useful ion everyday life, deals with things I am concerned with and helps me make decisions about my health.. TIMSS found that 62 and 65 % of females and males in Year 4 agree with I like learning science, but by Year 8 only 26 and 33 % still agree. Students in Japan have been doubly notably because of (a) their high performance in international measures of science achievement like TIMSS and PISA and (b) their very low response to items in these studies which relate to interest in science. Ogura (2003) reported an intra-national study of students across Years 6-9 (upper primary through Junior High); interest in a range of their subjects (including science) that make up that country’s national curriculum. There was a steady decline in interest in all these subjects which might have indicated an adolescent reaction against schooling generally. However, this study went on to ask the students a further question that is very meaningful in the Japanese context, If you discount the importance of this subject for university entrance, is it worth studying? Science and mathematics remained in decline while all the other subjects were seen more positively. It is thus ironic, at a time when some innovations in curriculum and other research-based findings are suggesting ways that these failures of school science might be corrected, to find school science under a new demands that come from quite outside science education, and which certainly do not have the correction of this malaise as a priority. The positive curricular and research findings can be characterized as moves from within science education, whereas the new demands are moves that come from without science education. In this paper I set out these two rather contrary challenges to the teaching of science as it is currently practised, and go on to suggest a way forward that could fruitfully combine the two.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2008 the introduction of the National Assessment Program – Literacy and Numeracy (NAPLAN), combined with the publication of the international comparative analyses of student achievement data (such as the Programme of International Student Assessment (PISA) developed by the Organisation for Economic Co-operation and Development (OECD) and the Trends in International Mathematics and Science Study (TIMSS) of the International Association for the Evaluation of Educational Achievement (IEA)) highlighted a significant priority for Australian education by identifying low levels of equity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The establishment and continuity of two international comparative assessments of science learning—the IEA’s TIMSS project and the OECD’s PISA project—have meant that there are now high-status reference points for other national and more local approaches to assessing the efficacy of science teaching and learning. Both projects, albeit with very different senses of what the outcome of science learning should be, have contributed positively and negatively to the current state of assessment of school science. The TIMSS project looks back at the science that is commonly included in the curricula of the participating countries. It is thus not about established school science nor about innovations in it. PISA is highly innovative looking, prospectively forward to see how students can use their science learning in everyday life situations. In this chapter some of these positives and negatives are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sob o rótulo da globalização, as ciências humanas e sociais têm sido forçadas a rever seu pensamento para encontrar novas maneiras de falar sobre as situações de mudança ao nosso redor e para reorientar-se conceitualmente em um aparente ‘mundo sem fronteiras’. Este artigo analisa algumas dessas formas, sugerindo que a pesquisa em currículo transnacional como tarefa, como talvez inclusiva de algo para além dos estudos curriculares como subárea, tem preocupações, pontos de entrada e horizontes de promulgação amplos, inconstantes, imprevisíveis, que levantam uma série de questões e considerações éticas que exigem maior compromisso nos espaços em que as fronteiras percebidas forem transgredidas no ato da investigação. Usando os relatórios sobre os resultados do PISA como disparador intelectual, este artigo discute quatro questões que surgem no ato investigativo em currículo transnacional: a comparação como princípio de produção de conhecimento; as estratégias de agrupamento onto-teo-filosóficas e a delimitação da ética; o retorno do sujeito centrado, humanista, racional e as críticas a esse sujeito inspirado no Iluminismo; as questões relativas à causalidade, ou seja, como os processos de atribuição são forjados e que tipos de ‘legitimação via procedimento’ operam na crítica social. Em vez de sugerir uma nova ordem, este artigo busca um questionamento mais profundo dos repetitivos pressupostos ocidentalistas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An initial call by the editors of International Research in Geographical and Environmental Education (IRGEE) prompted a study about the inclusion of geography in the Trends in International Mathematics and Science Study (TIMSS) tests. This study found that the geography education community were overwhelmingly in favour of such a move, believing that the information collected would be valuable in enhancing learning outcomes through its impact on research, policy and teaching practice (Lane & Bourke, 2016). However, a number of questions about the development and implementation of this assessment were posed. This paper addresses two of these questions: (1) What is the global geographical education community’s views about Grades 4 and 8 as target year levels for the assessment?; and, (2) What types of knowledge and cognitive dimensions would they like to see assessed? Based on these findings, the overarching key question that requires further discussion is: Can there be some degree of consensus in terms of what should be assessed and how the test should be implemented?