3 resultados para Phytoplankton -- Kuroshio
em Queensland University of Technology - ePrints Archive
Resumo:
In recent years, ocean scientists have started to employ many new forms of technology as integral pieces in oceanographic data collection for the study and prediction of complex and dynamic ocean phenomena. One area of technological advancement in ocean sampling if the use of Autonomous Underwater Vehicles (AUVs) as mobile sensor plat- forms. Currently, most AUV deployments execute a lawnmower- type pattern or repeated transects for surveys and sampling missions. An advantage of these missions is that the regularity of the trajectory design generally makes it easier to extract the exact path of the vehicle via post-processing. However, if the deployment region for the pattern is poorly selected, the AUV can entirely miss collecting data during an event of specific interest. Here, we consider an innovative technology toolchain to assist in determining the deployment location and executed paths for AUVs to maximize scientific information gain about dynamically evolving ocean phenomena. In particular, we provide an assessment of computed paths based on ocean model predictions designed to put AUVs in the right place at the right time to gather data related to the understanding of algal and phytoplankton blooms.
Resumo:
Samples of sea water contain phytoplankton taxa in varying amounts, and marine scientists are interested in the relative abundance of each taxa. Their relative biomass can be ascertained indirectly by measuring the quantity of various pigments using high performance liquid chromatography. However, the conversion from pigment to taxa is mathematically non trivial as it is a positive matrix factorisation problem where both matrices are unknown beyond the level of initial estimates. The prior information on the pigment to taxa conversion matrix is used to give the problem a unique solution. An iteration of two non-negative least squares algorithms gives satisfactory results. Some sample analysis of data indicates prospects for this type of analysis. An alternative more computationally intensive approach using Bayesian methods is discussed.
Resumo:
The biomass and species composition of tropical phytoplankton in Albatross Bay, Gulf of Carpentaria, northern Australia, were examined monthly for 6 yr (1986 to 1992). Chlorophyll a (chl a) concentrations were highest (2 to 5.7 mu g l(-1)) in the wet season at inshore sites, usually coinciding with low salinities (30 to 33 ppt) and high temperatures (29 to 32 degrees C). At the offshore sites chi a concentrations were lower (0.2 to 2 mu g l(-1)) and did not vary seasonally. Nitrate and phosphate concentrations were generally low (0 to 3.68 mu M and 0.09 to 3 mu M for nitrate and phosphate respectively), whereas silicate was present in concentrations in the range 0.19 to 13 mu M. The phytoplankton community was dominated by diatoms, particularly at the inshore sites, as determined by a combination of microscopic and high-performance liquid chromatography (HPLC) pigment analyses. At the offshore sites the proportion of green flagellates increased. The cyanobacterium genus Trichodesmium and the diatom genera Chaetoceros, Rhizosolenia, Bacteriastrum and Thalassionema dominated the phytoplankton caught in 37 mu m mesh nets; however, in contrast to many other coastal areas studied worldwide there was no distinct species succession of the diatoms and only Trichodesmium showed seasonal changes in abundance. This reflects a stable phytoplankton community in waters without pulses of physical and chemical disturbances. These results are discussed in the context of the commercial prawn fishery in the Gulf of Carpentaria and the possible effect of phytoplankton on prawn larval growth and survival.