66 resultados para Phi Beta Kappa addresses.
em Queensland University of Technology - ePrints Archive
Resumo:
The use of animal sera for the culture of therapeutically important cells impedes the clinical use of the cells. We sought to characterize the functional response of human mesenchymal stem cells (hMSCs) to specific proteins known to exist in bone tissue with a view to eliminating the requirement of animal sera. Insulin-like growth factor-I (IGF-I), via IGF binding protein-3 or -5 (IGFBP-3 or -5) and transforming growth factor-beta 1 (TGF-beta(1)) are known to associate with the extracellular matrix (ECM) protein vitronectin (VN) and elicit functional responses in a range of cell types in vitro. We found that specific combinations of VN, IGFBP-3 or -5, and IGF-I or TGF-beta(1) could stimulate initial functional responses in hMSCs and that IGF-I or TGF-beta(1) induced hMSC aggregation, but VN concentration modulated this effect. We speculated that the aggregation effect may be due to endogenous protease activity, although we found that neither IGF-I nor TGF-beta(1) affected the functional expression of matrix metalloprotease-2 or -9, two common proteases expressed by hMSCs. In summary, combinations of the ECM and growth factors described herein may form the basis of defined cell culture media supplements, although the effect of endogenous protease expression on the function of such proteins requires investigation.
Resumo:
High-rate flooding attacks (aka Distributed Denial of Service or DDoS attacks) continue to constitute a pernicious threat within the Internet domain. In this work we demonstrate how using packet source IP addresses coupled with a change-point analysis of the rate of arrival of new IP addresses may be sufficient to detect the onset of a high-rate flooding attack. Importantly, minimizing the number of features to be examined, directly addresses the issue of scalability of the detection process to higher network speeds. Using a proof of concept implementation we have shown how pre-onset IP addresses can be efficiently represented using a bit vector and used to modify a “white list” filter in a firewall as part of the mitigation strategy.
Resumo:
Lateral gene transfer (LGT) from prokaryotes to microbial eukaryotes is usually detected by chance through genome-sequencing projects. Here, we explore a different, hypothesis-driven approach. We show that the fitness advantage associated with the transferred gene, typically invoked only in retrospect, can be used to design a functional screen capable of identifying postulated LGT cases. We hypothesized that beta-glucuronidase (gus) genes may be prone to LGT from bacteria to fungi (thought to lack gus) because this would enable fungi to utilize glucuronides in vertebrate urine as a carbon source. Using an enrichment procedure based on a glucose-releasing glucuronide analog (cellobiouronic acid), we isolated two gus(+) ascomycete fungi from soils (Penicillium canescens and Scopulariopsis sp.). A phylogenetic analysis suggested that their gus genes, as well as the gus genes identified in genomic sequences of the ascomycetes Aspergillus nidulans and Gibberella zeae, had been introgressed laterally from high-GC gram(+) bacteria. Two such bacteria (Arthrobacter spp.), isolated together with the gus(+) fungi, appeared to be the descendants of a bacterial donor organism from which gus had been transferred to fungi. This scenario was independently supported by similar substrate affinities of the encoded beta-glucuronidases, the absence of introns from fungal gus genes, and the similarity between the signal peptide-encoding 5' extensions of some fungal gus genes and the Arthrobacter sequences upstream of gus. Differences in the sequences of the fungal 5' extensions suggested at least two separate introgression events after the divergence of the two main Euascomycete classes. We suggest that deposition of glucuronides on soils as a result of the colonization of land by vertebrates may have favored LGT of gus from bacteria to fungi in soils.
Resumo:
Establishing a nationwide Electronic Health Record system has become a primary objective for many countries around the world, including Australia, in order to improve the quality of healthcare while at the same time decreasing its cost. Doing so will require federating the large number of patient data repositories currently in use throughout the country. However, implementation of EHR systems is being hindered by several obstacles, among them concerns about data privacy and trustworthiness. Current IT solutions fail to satisfy patients’ privacy desires and do not provide a trustworthiness measure for medical data. This thesis starts with the observation that existing EHR system proposals suer from six serious shortcomings that aect patients’ privacy and safety, and medical practitioners’ trust in EHR data: accuracy and privacy concerns over linking patients’ existing medical records; the inability of patients to have control over who accesses their private data; the inability to protect against inferences about patients’ sensitive data; the lack of a mechanism for evaluating the trustworthiness of medical data; and the failure of current healthcare workflow processes to capture and enforce patient’s privacy desires. Following an action research method, this thesis addresses the above shortcomings by firstly proposing an architecture for linking electronic medical records in an accurate and private way where patients are given control over what information can be revealed about them. This is accomplished by extending the structure and protocols introduced in federated identity management to link a patient’s EHR to his existing medical records by using pseudonym identifiers. Secondly, a privacy-aware access control model is developed to satisfy patients’ privacy requirements. The model is developed by integrating three standard access control models in a way that gives patients access control over their private data and ensures that legitimate uses of EHRs are not hindered. Thirdly, a probabilistic approach for detecting and restricting inference channels resulting from publicly-available medical data is developed to guard against indirect accesses to a patient’s private data. This approach is based upon a Bayesian network and the causal probabilistic relations that exist between medical data fields. The resulting definitions and algorithms show how an inference channel can be detected and restricted to satisfy patients’ expressed privacy goals. Fourthly, a medical data trustworthiness assessment model is developed to evaluate the quality of medical data by assessing the trustworthiness of its sources (e.g. a healthcare provider or medical practitioner). In this model, Beta and Dirichlet reputation systems are used to collect reputation scores about medical data sources and these are used to compute the trustworthiness of medical data via subjective logic. Finally, an extension is made to healthcare workflow management processes to capture and enforce patients’ privacy policies. This is accomplished by developing a conceptual model that introduces new workflow notions to make the workflow management system aware of a patient’s privacy requirements. These extensions are then implemented in the YAWL workflow management system.
Resumo:
Background: The first sign of developing multiple sclerosis is a clinically isolated syndrome that resembles a multiple sclerosis relapse. Objective/methods: The objective was to review the clinical trials of two medicines in clinically isolated syndromes (interferon β and glatiramer acetate) to determine whether they prevent progression to definite multiple sclerosis. Results: In the BENEFIT trial, after 2 years, 45% of subjects in the placebo group developed clinically definite multiple sclerosis, and the rate was lower in the interferon β-1b group. Then all subjects were offered interferon β-1b, and the original interferon β-1b group became the early treatment group, and the placebo group became the delayed treatment group. After 5 years, the number of subjects with clinical definite multiple sclerosis remained lower in the early treatment than late treatment group. In the PreCISe trial, after 2 years, the time for 25% of the subjects to convert to definite multiple sclerosis was prolonged in the glatiramer group. Conclusions: Interferon β-1b and glatiramer acetate slow the progression of clinically isolated syndromes to definite multiple sclerosis. However, it is not known whether this early treatment slows the progression to the physical disabilities experienced in multiple sclerosis.
Resumo:
The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor-beta (TGF-beta) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGF-beta and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGF-beta in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGF-beta significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures.
Resumo:
Problem: Innate immune activation of human cells, for some intracellular pathogens, is advantageous for vacuole morphology and pathogenic viability. It is unknown whether innate immune activation is advantageous to Chlamydia trachomatis viability. ----- ----- Method of study: Innate immune activation of HEp-2 cells during Chlamydia infection was conducted using lipopolysaccharide (LPS), polyI:C, and wedelolactone (innate immune inhibitor) to investigate the impact of these conditions on viability of Chlamydia. ----- ----- Results: The addition of LPS and polyI:C to stimulate activation of the two distinct innate immune pathways (nuclear factor kappa beta and interferon regulatory factor) had no impact on the viability of Chlamydia. However, when compounds targeting either pathway were added in combination with the specific innate immune inhibitor (wedelolactone) a major impact on Chlamydia viability was observed. This impact was found to be due to the induction of apoptosis of the HEp-2 cells under these conditions. ----- ----- Conclusion: This is the first time that induction of apoptosis has been reported in C. trachomatis-infected cells when treated with a combination of innate immune activators and wedelolactone.