63 resultados para Phase change films

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 ◦C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

α- and β-Phase MoO3 are synthesized using an electrodeposition method on fluorine-doped tin oxide (FTO) glass substrates from sodium-molybdate (Na2MoO4) solutions. We show that it is possible to obtain both α- and β-MoO3 by manipulating the cyclic voltammetry (CV) parameters during electrodeposition. Raman spectroscopy, X-ray diffraction, and scanning electron microscopy indicate that the applied potential range and sweep rate are strongly influential on the phase obtained and the surface morphology of the electrodeposited thin films. Gasochromic measurements were carried out on the annealed samples by exposing them to H2 gas. It was revealed that α-MoO3 thin films provided better response to H2 interaction than β-MoO3 films did. Additionally, porous films provided significantly larger responses than smooth films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research was a step towards the comprehension of the nano-particles interaction with bubbles created during boiling. It was aimed at solving the controversies of whether the heat transfer is enhanced or deteriorated during the boiling of the nanofluid. Experiments were conducted in normal gravity and reduced gravity environments on-board the European Space Agency Parabolic Flight Program. The local modification of the thermo-physical properties of the fluid and moreover the modification experienced in the liquid microlayer under the growing vapour bubble were the dominant factors in explaining the mechanisms of the boiling behaviour of the nanofluid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We examine the solution of the two-dimensional Cahn-Hilliard-reaction (CHR) equation in the xy plane as a model of Li+ intercalation into LiFePO4 material. We validate our numerical solution against the solution of the depth-averaged equation, which has been used to model intercalation in the limit of highly orthotropic diffusivity and gradient penalty tensors. We then examine the phase-change behaviour in the full CHR system as these parameters become more isotropic, and find that as the Li+ diffusivity is increased in the x direction, phase separation persists at high currents, even in small crystals with averaged coherency strain included. The resulting voltage curves decrease monotonically, which has previously been considered a hallmark of crystals that fill homogeneously.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We construct a two-scale mathematical model for modern, high-rate LiFePO4cathodes. We attempt to validate against experimental data using two forms of the phase-field model developed recently to represent the concentration of Li+ in nano-sized LiFePO4crystals. We also compare this with the shrinking-core based model we developed previously. Validating against high-rate experimental data, in which electronic and electrolytic resistances have been reduced is an excellent test of the validity of the crystal-scale model used to represent the phase-change that may occur in LiFePO4material. We obtain poor fits with the shrinking-core based model, even with fitting based on “effective” parameter values. Surprisingly, using the more sophisticated phase-field models on the crystal-scale results in poorer fits, though a significant parameter regime could not be investigated due to numerical difficulties. Separate to the fits obtained, using phase-field based models embedded in a two-scale cathodic model results in “many-particle” effects consistent with those reported recently.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Durland and McCurdy [Durland, J.M., McCurdy, T.H., 1994. Duration-dependent transitions in a Markov model of US GNP growth. Journal of Business and Economic Statistics 12, 279–288] investigated the issue of duration dependence in US business cycle phases using a Markov regime-switching approach, introduced by Hamilton [Hamilton, J., 1989. A new approach to the analysis of time series and the business cycle. Econometrica 57, 357–384] and extended to the case of variable transition parameters by Filardo [Filardo, A.J., 1994. Business cycle phases and their transitional dynamics. Journal of Business and Economic Statistics 12, 299–308]. In Durland and McCurdy’s model duration alone was used as an explanatory variable of the transition probabilities. They found that recessions were duration dependent whilst expansions were not. In this paper, we explicitly incorporate the widely-accepted US business cycle phase change dates as determined by the NBER, and use a state-dependent multinomial Logit modelling framework. The model incorporates both duration and movements in two leading indexes – one designed to have a short lead (SLI) and the other designed to have a longer lead (LLI) – as potential explanatory variables. We find that doing so suggests that current duration is not only a significant determinant of transition out of recessions, but that there is some evidence that it is also weakly significant in the case of expansions. Furthermore, we find that SLI has more informational content for the termination of recessions whilst LLI does so for expansions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Damage assessment (damage detection, localization and quantification) in structures and appropriate retrofitting will enable the safe and efficient function of the structures. In this context, many Vibration Based Damage Identification Techniques (VBDIT) have emerged with potential for accurate damage assessment. VBDITs have achieved significant research interest in recent years, mainly due to their non-destructive nature and ability to assess inaccessible and invisible damage locations. Damage Index (DI) methods are also vibration based, but they are not based on the structural model. DI methods are fast and inexpensive compared to the model-based methods and have the ability to automate the damage detection process. DI method analyses the change in vibration response of the structure between two states so that the damage can be identified. Extensive research has been carried out to apply the DI method to assess damage in steel structures. Comparatively, there has been very little research interest in the use of DI methods to assess damage in Reinforced Concrete (RC) structures due to the complexity of simulating the predominant damage type, the flexural crack. Flexural cracks in RC beams distribute non- linearly and propagate along all directions. Secondary cracks extend more rapidly along the longitudinal and transverse directions of a RC structure than propagation of existing cracks in the depth direction due to stress distribution caused by the tensile reinforcement. Simplified damage simulation techniques (such as reductions in the modulus or section depth or use of rotational spring elements) that have been extensively used with research on steel structures, cannot be applied to simulate flexural cracks in RC elements. This highlights a big gap in knowledge and as a consequence VBDITs have not been successfully applied to damage assessment in RC structures. This research will address the above gap in knowledge and will develop and apply a modal strain energy based DI method to assess damage in RC flexural members. Firstly, this research evaluated different damage simulation techniques and recommended an appropriate technique to simulate the post cracking behaviour of RC structures. The ABAQUS finite element package was used throughout the study with properly validated material models. The damaged plasticity model was recommended as the method which can correctly simulate the post cracking behaviour of RC structures and was used in the rest of this study. Four different forms of Modal Strain Energy based Damage Indices (MSEDIs) were proposed to improve the damage assessment capability by minimising the numbers and intensities of false alarms. The developed MSEDIs were then used to automate the damage detection process by incorporating programmable algorithms. The developed algorithms have the ability to identify common issues associated with the vibration properties such as mode shifting and phase change. To minimise the effect of noise on the DI calculation process, this research proposed a sequential order of curve fitting technique. Finally, a statistical based damage assessment scheme was proposed to enhance the reliability of the damage assessment results. The proposed techniques were applied to locate damage in RC beams and slabs on girder bridge model to demonstrate their accuracy and efficiency. The outcomes of this research will make a significant contribution to the technical knowledge of VBDIT and will enhance the accuracy of damage assessment in RC structures. The application of the research findings to RC flexural members will enable their safe and efficient performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

LiFePO4 is a commercially available battery material with good theoretical discharge capacity, excellent cycle life and increased safety compared with competing Li-ion chemistries. It has been the focus of considerable experimental and theoretical scrutiny in the past decade, resulting in LiFePO4 cathodes that perform well at high discharge rates. This scrutiny has raised several questions about the behaviour of LiFePO4 material during charge and discharge. In contrast to many other battery chemistries that intercalate homogeneously, LiFePO4 can phase-separate into highly and lowly lithiated phases, with intercalation proceeding by advancing an interface between these two phases. The main objective of this thesis is to construct mathematical models of LiFePO4 cathodes that can be validated against experimental discharge curves. This is in an attempt to understand some of the multi-scale dynamics of LiFePO4 cathodes that can be difficult to determine experimentally. The first section of this thesis constructs a three-scale mathematical model of LiFePO4 cathodes that uses a simple Stefan problem (which has been used previously in the literature) to describe the assumed phase-change. LiFePO4 crystals have been observed agglomerating in cathodes to form a porous collection of crystals and this morphology motivates the use of three size-scales in the model. The multi-scale model developed validates well against experimental data and this validated model is then used to examine the role of manufacturing parameters (including the agglomerate radius) on battery performance. The remainder of the thesis is concerned with investigating phase-field models as a replacement for the aforementioned Stefan problem. Phase-field models have recently been used in LiFePO4 and are a far more accurate representation of experimentally observed crystal-scale behaviour. They are based around the Cahn-Hilliard-reaction (CHR) IBVP, a fourth-order PDE with electrochemical (flux) boundary conditions that is very stiff and possesses multiple time and space scales. Numerical solutions to the CHR IBVP can be difficult to compute and hence a least-squares based Finite Volume Method (FVM) is developed for discretising both the full CHR IBVP and the more traditional Cahn-Hilliard IBVP. Phase-field models are subject to two main physicality constraints and the numerical scheme presented performs well under these constraints. This least-squares based FVM is then used to simulate the discharge of individual crystals of LiFePO4 in two dimensions. This discharge is subject to isotropic Li+ diffusion, based on experimental evidence that suggests the normally orthotropic transport of Li+ in LiFePO4 may become more isotropic in the presence of lattice defects. Numerical investigation shows that two-dimensional Li+ transport results in crystals that phase-separate, even at very high discharge rates. This is very different from results shown in the literature, where phase-separation in LiFePO4 crystals is suppressed during discharge with orthotropic Li+ transport. Finally, the three-scale cathodic model used at the beginning of the thesis is modified to simulate modern, high-rate LiFePO4 cathodes. High-rate cathodes typically do not contain (large) agglomerates and therefore a two-scale model is developed. The Stefan problem used previously is also replaced with the phase-field models examined in earlier chapters. The results from this model are then compared with experimental data and fit poorly, though a significant parameter regime could not be investigated numerically. Many-particle effects however, are evident in the simulated discharges, which match the conclusions of recent literature. These effects result in crystals that are subject to local currents very different from the discharge rate applied to the cathode, which impacts the phase-separating behaviour of the crystals and raises questions about the validity of using cathodic-scale experimental measurements in order to determine crystal-scale behaviour.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Flower development in kiwifruit (Actinidia spp.) is initiated in the first growing season, when undifferentiated primordia are established in latent shoot buds. These primordia can differentiate into flowers in the second growing season, after the winter dormancy period and upon accumulation of adequate winter chilling. Kiwifruit is an important horticultural crop, yet little is known about the molecular regulation of flower development. Results To study kiwifruit flower development, nine MADS-box genes were identified and functionally characterized. Protein sequence alignment, phenotypes obtained upon overexpression in Arabidopsis and expression patterns suggest that the identified genes are required for floral meristem and floral organ specification. Their role during budbreak and flower development was studied. A spontaneous kiwifruit mutant was utilized to correlate the extended expression domains of these flowering genes with abnormal floral development. Conclusions This study provides a description of flower development in kiwifruit at the molecular level. It has identified markers for flower development, and candidates for manipulation of kiwifruit growth, phase change and time of flowering. The expression in normal and aberrant flowers provided a model for kiwifruit flower development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dispersion properties and topography of the fields of azimuthal surface wave (ASW) in a coaxial semiconductor structure with metal walls, placed in an external magnetic field, are investigated analytically and numerically. It is shown that an ASW phase-shifting device can be realized in the proposed structure. The conditions are indicated for which wave perturbations exist having frequencies that depend on the direction of phase change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modelling of food processing is complex because it involves sophisticated material and transport phenomena. Most of the agricultural products such fruits and vegetables are hygroscopic porous media containing free water, bound water, gas and solid matrix. Considering all phase in modelling is still not developed. In this article, a comprehensive porous media model for drying has been developed considering bound water, free water separately, as well as water vapour and air. Free water transport was considered as diffusion, pressure driven and evaporation. Bound water assumed to be converted to free water due to concentration difference and also can diffuse. Binary diffusion between water vapour and air was considered. Since, the model is fundamental physics based it can be applied to any drying applications and other food processing where heat and mass transfer takes place in porous media with significant evaporation and other phase change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon-doped hydrogenated silicon oxide (SiOCH) low-k films have been prepared using 13.56 MHz discharge in trimethylsilane (3MS) - oxygen gas mixtures at 3, 4, and 5 Torr sustained with RF power densities 1.3 - 2.6 W/cm2. The atomic structure of the SiOCH films appears to be a mixture the amorphous SiO2-like and the partially polycrystalline SiC-like phases. Results of the infra-red spectroscopy reflect the increment in the volume fraction of the SiC-like phase from 0.22 - 0.28 to 0.36 - 0.39 as the RF power increment. Steady-state near-UV laser-excited (364 nm wavelength, 40±2 mW) photoluminescence (PL) has been studied at room temperatures in the visible (1.8 eV - 3.1 eV) subrange of photon spectrum. Two main bands of the PL signal (at the photon energies of 2.5 - 2.6 eV and 2.8 - 2.9 eV) are observed. Intensities of the both bands are changed monotonically with RF power, whereas the bandwidth of ∼0.1 eV remains almost invariable. It is likely that the above lines are dumped by the non-radiative recombination involving E1-like centres in the amorphous-nanocrystalline SiC-like phases. Such explanation of the PL intensity dependences on the RF power density is supported by results of experimental studies of defect states spectrum in bandgap of the SiOCH films.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Road infrastructure is a major contributor of greenhouse gas (GHG) around the world. Once constructed, a road becomes a part of a road network and is subjected to recurrent maintenance/rehabilitation activities. Studies to date are mostly aimed at the development of sustainability indicators that deal with the material and construction phases of a road when it is constructed. The operation phase is infrequently studied and there is a need for sustainability indicators to be developed relating to this phase to better understand the GHG emissions as a proper response to the climate change phenomena. During the operation phase, maintenance/rehabilitation activities are undertaken based on certain agreed intervention criteria that do not include environmental implications relating to the climate change aspect properly. Availability of appropriate indicators may, therefore, assist in sustainable road asset maintenance management. This paper presents the findings of a literature based study and has proposed a way forward to develop a key “road operation phase” environmental indicator, which can contribute to road operation phase carbon footprint management based on a comprehensive road life cycle system boundary model. The proposed indicator can address multiple aspects of high impact road operation life environmental components such as: pavement rolling resistance, albedo, material, traffic congestion and lighting, based on availability of relevant scientific knowledge. Development of the indicator to appropriate level would offset the impacts of these components significantly and contribute to sustainable road operation management.