5 resultados para Pau, Jeroni

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A facile and sensitive surface-enhanced Raman scattering substrate was prepared by controlled potentiostatic deposition of a closely packed single layer of gold nanostructures (AuNS) over a flat gold (pAu) platform. The nanometer scale inter-particle distance between the particles resulted in high population of ‘hot spots’ which enormously enhanced the scattered Raman photons. A renewed methodology was followed to precisely quantify the SERS substrate enhancement factor (SSEF) and it was estimated to be (2.2 ± 0.17) × 105. The reproducibility of the SERS signal acquired by the developed substrate was tested by establishing the relative standard deviation (RSD) of 150 repeated measurements from various locations on the substrate surface. A low RSD of 4.37 confirmed the homogeneity of the developed substrate. The sensitivity of pAu/AuNS was proven by determining 100 fM 2,4,6-trinitrotoluene (TNT) comfortably. As a proof of concept on the potential of the new pAu/AuNS substrate in field analysis, TNT in soil and water matrices was selectively detected after forming a Meisenheimer complex with cysteamine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythropoietin (EPO), a glycoprotein hormone of ∼34 kDa, is an important hematopoietic growth factor, mainly produced in the kidney and controls the number of red blood cells circulating in the blood stream. Sensitive and rapid recombinant human EPO (rHuEPO) detection tools that improve on the current laborious EPO detection techniques are in high demand for both clinical and sports industry. A sensitive aptamer-functionalized biosensor (aptasensor) has been developed by controlled growth of gold nanostructures (AuNS) over a gold substrate (pAu/AuNS). The aptasensor selectively binds to rHuEPO and, therefore, was used to extract and detect the drug from horse plasma by surface enhanced Raman spectroscopy (SERS). Due to the nanogap separation between the nanostructures, the high population and distribution of hot spots on the pAu/AuNS substrate surface, strong signal enhancement was acquired. By using wide area illumination (WAI) setting for the Raman detection, a low RSD of 4.92% over 150 SERS measurements was achieved. The significant reproducibility of the new biosensor addresses the serious problem of SERS signal inconsistency that hampers the use of the technique in the field. The WAI setting is compatible with handheld Raman devices. Therefore, the new aptasensor can be used for the selective extraction of rHuEPO from biological fluids and subsequently screened with handheld Raman spectrometer for SERS based in-field protein detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the risk of hyperuricemia in relation to Perfluoroalkyl substances (PFASs) in children from Taiwan, 225 Taiwanese children aged 12-15 years were recruited from 2009 to 2010. Linear and logistic regression models were employed to examine the influence of PFASs on serum uric acid levels. Findings revealed that eight of ten PFASs analyses were detected in > 94% of the participants' serum samples. Multivariate linear regression models revealed that perfluorooctanic acid (PFOA) was positively associated with serum uric acid levels (β=0.1463, p<0.05). Of all the PFASs analyses, only PFOA showed a significant effect on elevated levels of hyperuricemia (aOR=2.16, 95%CI: 1.29-3.61). When stratified by gender, the association between serum PFOA and uric acid levels was only evident among boys (aOR=2.76, 95%CI: 1.37-5.56). In conclusion, PFOA was found to be associated with elevated serum levels of uric acid in Taiwanese children, especially boys. Further research is needed to elucidate these links.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homozygosity has long been associated with rare, often devastating, Mendelian disorders1, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3, 4. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10−300, 2.1 × 10−6, 2.5 × 10−10 and 1.8 × 10−10, respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months’ less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5, 6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.