31 resultados para Pathologies neurodégénératives
em Queensland University of Technology - ePrints Archive
Resumo:
The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and developing valvular tissue, and its deletion or RNA interference-mediated knockdown is catastrophic for heart development. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.
Resumo:
Preserving the integrity of the skin's outermost layer (the epidermis) is vital for humans to thrive in hostile surroundings. Covering the entire body, the epidermis forms a thin but impenetrable cellular cordon that repels external assaults and blocks escape of water and electrolytes from within. This structure exists in a perpetual state of regeneration where the production of new cellular subunits at the base of the epidermis is offset by the release of terminally differentiated corneocytes from the surface. It is becoming increasingly clear that proteases hold vital roles in assembling and maintaining the epidermal barrier. More than 30 proteases are expressed by keratinocytes or infiltrating immune cells and the activity of each must be maintained within narrow limits and confined to the correct time and place. Accordingly, over- or under-exertion of proteolytic activity is a common factor in a multitude of skin disorders that range in severity from relatively mild to life-threatening. This review explores the current state of knowledge on the involvement of proteases in skin diseases and the latest findings from proteomic and transcriptomic studies focused on uncovering novel (patho)physiological roles for these enzymes.
Resumo:
Several components of the metabolic syndrome, particularly diabetes and cardiovascular disease, are known to be oxidative stress-related conditions and there is research to suggest that antioxidant nutrients may play a protective role in these conditions. Carotenoids are compounds derived primarily from plants and several have been shown to be potent antioxidant nutrients. The aim of this study was to examine the associations between metabolic syndrome status and major serum carotenoids in adult Australians. Data on the presence of the metabolic syndrome, based on International Diabetes Federation 2005 criteria, were collected from 1523 adults aged 25 years and over in six randomly selected urban centers in Queensland, Australia, using a cross-sectional study design. Weight, height, BMI, waist circumference, blood pressure, fasting and 2-hour blood glucose and lipids were determined, as well as five serum carotenoids. Mean serum alpha-carotene, beta-carotene and the sum of the five carotenoid concentrations were significantly lower (p<0.05) in persons with the metabolic syndrome (after adjusting for age, sex, education, BMI status, alcohol intake, smoking, physical activity status and vitamin/mineral use) than persons without the syndrome. Alpha, beta and total carotenoids also decreased significantly (p<0.05) with increased number of components of the metabolic syndrome, after adjusting for these confounders. These differences were significant among former smokers and non-smokers, but not in current smokers. Low concentrations of serum alpha-carotene, beta-carotene and the sum of five carotenoids appear to be associated with metabolic syndrome status. Additional research, particularly longitudinal studies, may help to determine if these associations are causally related to the metabolic syndrome, or are a result of the pathologies of the syndrome.
Resumo:
While spatial determinants of emmetropization have been examined extensively in animal models and spatial processing of human myopes has also been studied, there have been few studies investigating temporal aspects of emmetropization and temporal processing in human myopia. The influence of temporal light modulation on eye growth and refractive compensation has been observed in animal models and there is evidence of temporal visual processing deficits in individuals with high myopia or other pathologies. Given this, the aims of this work were to examine the relationships between myopia (i.e. degree of myopia and progression status) and temporal visual performance and to consider any temporal processing deficits in terms of the parallel retinocortical pathways. Three psychophysical studies investigating temporal processing performance were conducted in young adult myopes and non-myopes: (1) backward visual masking, (2) dot motion perception and (3) phantom contour. For each experiment there were approximately 30 young emmetropes, 30 low myopes (myopia less than 5 D) and 30 high myopes (5 to 12 D). In the backward visual masking experiment, myopes were also classified according to their progression status (30 stable myopes and 30 progressing myopes). The first study was based on the observation that the visibility of a target is reduced by a second target, termed the mask, presented quickly after the first target. Myopes were more affected by the mask when the task was biased towards the magnocellular pathway; myopes had a 25% mean reduction in performance compared with emmetropes. However, there was no difference in the effect of the mask when the task was biased towards the parvocellular system. For all test conditions, there was no significant correlation between backward visual masking task performance and either the degree of myopia or myopia progression status. The dot motion perception study measured detection thresholds for the minimum displacement of moving dots, the maximum displacement of moving dots and degree of motion coherence required to correctly determine the direction of motion. The visual processing of these tasks is dominated by the magnocellular pathway. Compared with emmetropes, high myopes had reduced ability to detect the minimum displacement of moving dots for stimuli presented at the fovea (20% higher mean threshold) and possibly at the inferior nasal retina. The minimum displacement threshold was significantly and positively correlated to myopia magnitude and axial length, and significantly and negatively correlated with retinal thickness for the inferior nasal retina. The performance of emmetropes and myopes for all the other dot motion perception tasks were similar. In the phantom contour study, the highest temporal frequency of the flickering phantom pattern at which the contour was visible was determined. Myopes had significantly lower flicker detection limits (21.8 ± 7.1 Hz) than emmetropes (25.6 ± 8.8 Hz) for tasks biased towards the magnocellular pathway for both high (99%) and low (5%) contrast stimuli. There was no difference in flicker limits for a phantom contour task biased towards the parvocellular pathway. For all phantom contour tasks, there was no significant correlation between flicker detection thresholds and magnitude of myopia. Of the psychophysical temporal tasks studied here those primarily involving processing by the magnocellular pathway revealed differences in performance of the refractive error groups. While there are a number of interpretations for this data, this suggests that there may be a temporal processing deficit in some myopes that is selective for the magnocellular system. The minimum displacement dot motion perception task appears the most sensitive test, of those studied, for investigating changes in visual temporal processing in myopia. Data from the visual masking and phantom contour tasks suggest that the alterations to temporal processing occur at an early stage of myopia development. In addition, the link between increased minimum displacement threshold and decreasing retinal thickness suggests that there is a retinal component to the observed modifications in temporal processing.
Resumo:
Prostate cancer is the second most common cause of cancer related deaths in Western men. Despite the significant improvements in current treatment techniques, there is no cure for advanced metastatic, castrate-resistant disease. Early detection and prevention of progression to a castrate-resistant state may provide new strategies to improve survival. A number of growth factors have been shown to act in an autocrine/paracrine manner to modulate prostate cancer tumour growth. Our laboratory has previously shown that ghrelin and its receptors (the functional GHS-R1a and the non-functional GHS-R1b) are expressed in prostate cancer specimens and cell lines. We have shown that ghrelin increases cell proliferation in the PC3 and LNCaP prostate cancer cell lines through activation of ERK1/2, suggesting that ghrelin could regulate prostate cancer cell growth and play a role in the progression of the disease. Ghrelin is a 28 amino-acid peptide hormone, identified to be the natural ligand of the growth hormone secretagogue receptor (GHS-R1a). It is well characterised as a growth hormone releasing and as an orexigenic peptide that stimulates appetite and feeding and regulates energy expenditure and bodyweight. In addition to its orexigenic properties, ghrelin has been shown to play a regulatory role in a number of systems, including the reproductive, immune and cardiovascular systems and may play a role in a number of pathological conditions such as chronic heart failure, anorexia, cachexia, obesity, diabetes and cancer. In cancer, ghrelin and its receptor are expressed in a range of tumours and cancer cell lines and ghrelin has been demonstrated to modulate cell proliferation, apoptosis, migration and invasion in some cell types. The ghrelin gene (GHRL) encodes preproghrelin peptide, which is processed to produce three currently known functional peptides - ghrelin, desacyl ghrelin and obestatin. Prohormone convertases (PCs) have been shown to cleave the preproghrelin peptide into two primary products - the 28 amino acid peptide, ghrelin, and the remaining 117 amino acid C-terminal peptide, C-ghrelin. C-ghrelin can then be further processed to produce the 23 amino acid peptide, obestatin. Ghrelin circulates in two different forms - an octanoylated form (known as ghrelin) and a non-octanoylated form, desacyl ghrelin. The unique post-translational addition of octanoic acid to the serine 3 residue of the propeptide chain to form acylated ghrelin is catalysed by ghrelin O-acyltransferase (GOAT). This modification is necessary for binding of ghrelin to its only known functional receptor, the GHS-R1a. As desacyl ghrelin cannot bind and activate the GHS-R1a, it was initially thought to be an inactive peptide, despite the fact that it circulates at much higher levels than ghrelin. Further research has demonstrated that desacyl ghrelin is biologically active and shares some of the actions of ghrelin, as well as having some opposing and distinct roles. Interestingly, both ghrelin and desacyl ghrelin have been shown to modulate apoptosis, cell differentiation and proliferation in some cell types, and to stimulate cell proliferation through activation of ERK1/2 and PI3K/Akt pathways. The third known peptide product of the ghrelin preprohormone, obestatin, was initially thought to oppose the actions of ghrelin in appetite regulation and food intake and to mediate its effects through the G protein-coupled receptor 39 (GPR39). Subsequent research failed to reproduce the initial findings, however, and the possible anorexigenic effects of obestatin, as well as the identity of its receptor, remain unclear. Obestatin plays some important physiological roles, including roles in improving memory, the inhibition of thirst and anxiety, increased secretion of pancreatic juice, and regulation of cell proliferation, survival, apoptosis and differentiation. Preliminary studies have also shown that obestatin stimulates cell proliferation in some cell types through activation of ERK1/2, Akt and PKC pathways. Overall, however, at the commencement of this PhD project, relatively little was known regarding the functions and mechanisms of action of the preproghrelin-derived functional peptides in modulating prostate cancer cell proliferation. The roles of obestatin, and desacyl ghrelin as potential growth factors had not previously been investigated, and the potential expression and regulation of the preproghrelin processing enzymes, GOAT and prohormone convertases was unknown in prostate cancer cell lines. Therefore, the overall objectives of this study were to: 1. investigate the effects of obestatin on cell proliferation and signaling in prostate cancer cell lines 2. compare the effects of desacyl ghrelin and ghrelin on cell proliferation and signaling in prostate cancer cell lines 3. investigate whether prostate cancer cell lines possess the necessary enzymatic machinery to produce ghrelin and desacyl ghrelin and if these peptides can regulate GOAT expression Our laboratory has previously shown that ghrelin stimulates cell proliferation in the PC3 and LNCaP prostate cancer cell line through activation of the ERK1/2 pathway. In this study it has been demonstrated that treatments with either ghrelin, desacyl ghrelin or obestatin over 72 hours significantly increased cell proliferation in the PC3 prostate cancer cell line but had no significant effect in the RWPE-1 transformed normal prostate cell line. Ghrelin (1000nM) stimulated cell proliferation in the PC3 prostate cancer cell line by 31.66 6.68% (p<0.01) with the WST-1 method, and 13.55 5.68% (p<0.05) with the CyQUANT assay. Desacyl ghrelin (1000nM) increased cell proliferation in PC3 cells by 21.73 2.62% (p<0.01) (WST-1), and 15.46 7.05% (p<0.05) (CyQUANT) above untreated control. Obestatin (1000nM) induced a 28.37 7.47% (p<0.01) (WST-1) and 12.14 7.47% (p<0.05) (CyQUANT) significant increase in cell proliferation in the PC3 prostate cancer cell line. Ghrelin and desacyl ghrelin treatments stimulated Akt and ERK phosphorylation across a range of concentrations (p<0.01). Obestatin treatment significantly stimulated Akt, ERK and PKC phosphorylation (p<0.05). Through the use of specific inhibitors, the MAPK inhibitor U0126 and the Akt1/2 kinase inhibitor, it was demonstrated that ghrelin- and obestatin-induced cell proliferation in the PC3 prostate cancer cell line is mediated through activation of ERK1/2 and Akt pathways. Although desacyl ghrelin significantly stimulated Akt and ERK phosphorylation, U0126 failed to prevent desacyl ghrelin-induced cell proliferation suggesting ghrelin and desacyl ghrelin might act through different mechanisms to increase cell proliferation. Ghrelin and desacyl ghrelin have shown a proliferative effect in osteoblasts, pancreatic -cells and cardiomyocytes through activation of ERK1/2 and PI3K/Akt pathways. Here it has been shown that ghrelin and its non-acylated form exert the same function and stimulate cell proliferation in the PC3 prostate cancer cell line through activation of the Akt pathway. Ghrelin-induced proliferation was also mediated through activation of the ERK1/2 pathway, however, desacyl ghrelin seems to stimulate cell proliferation in an ERK1/2-independent manner. As desacyl ghrelin does not bind and activate GHSR1a, the only known functional ghrelin receptor, the finding that both ghrelin and desacyl ghrelin stimulate cell proliferation in the PC3 cell line suggests that these peptides could be acting through the yet unidentified alternative ghrelin receptor in this cell type. Obestatin treatment also stimulated PKC phosphorylation, however, a direct role for this pathway in stimulating cell proliferation could not be proven using available PKC pathway inhibitors, as they caused significant cell death over the extended timeframe of the cell proliferation assays. Obestatin has been shown to stimulate cell proliferation through activation of PKC isoforms in human retinal epithelial cells and in the human gastric cancer cell line KATO-III. We have demonstrated that all of the prostate-derived cell lines examined (PC3, LNCaP, DU145, 22Rv1, RWPE-1 and RWPE-2) expressed GOAT and at least one of the prohormone convertases, which are known to cleave the proghrelin peptide, PC1/3, PC2 and furin, at the mRNA level. These cells, therefore, are likely to possess the necessary machinery to cleave the preproghrelin protein and to produce the mature ghrelin and desacyl ghrelin peptides. In addition to prohormone convertases, the presence of octanoic acid is essential for acylated ghrelin production. In this study octanoic acid supplementation significantly increased cell proliferation in the PC3 prostate cancer cell line by over 20% compared to untreated controls (p<0.01), but surprisingly, not in the DU145, LNCaP or 22Rv1 prostate cancer cell lines or in the RWPE-1 and RWPE-2 prostate-derived cell lines. In addition, we demonstrated that exogenous ghrelin induced a statistically significant two-fold decrease in GOAT mRNA expression in the PC3 cell line (p<0.05), suggesting that ghrelin could pontentially downregulate its own acylation and, therefore, regulate the balance between ghrelin and desacyl ghrelin. This was not observed, however, in the DU145 and LNCaP prostate cancer cell lines. The GOAT-ghrelin system represents a direct link between ingested nutrients and regulation of ghrelin production and the ghrelin/desacyl ghrelin ratio. Regulation of ghrelin acylation is a potentially attractive and desirable tool for the development of better therapies for a number of pathological conditions where ghrelin has been shown to play a key role. The finding that desacyl ghrelin stimulates cell proliferation in the PC3 prostate cancer cell line, and responds to ghrelin in the same way, suggests that this cell line expresses an alternative ghrelin receptor. Although all the cell lines examined expressed both GHS-R1a and GHS-R1b mRNA, it remains uncertain whether these cell lines express the unidentified alternative ghrelin receptor. It is possible that the varied responses seen could be due to the expression of different ghrelin receptors in different cell lines. In addition to GOAT, prohormone convertases and octanoic acid availability may regulate the production of different peptides from the ghrelin preprohormone. The studies presented in this thesis provide significant new information regarding the roles and mechanisms of action of the preproghrelin-derived peptides, ghrelin, desacyl ghrelin and obestatin, in modulating prostate cancer cell line proliferation. A number of key questions remain to be resolved, however, including the identification of the alternative ghrelin/desacyl ghrelin receptor, the identification of the obestatin receptor, a clarification of the signaling mechanisms which mediate cell proliferation in response to obestatin treatment and a better understanding of the regulation at both the gene and post-translational levels of functional peptide generation. Further studies investigating the role of the ghrelin axis using in vivo prostate cancer models may be warranted. Until these issues are determined, the potential for the ghrelin axis, to be recognised as a novel useful target for therapy for cancer or other pathologies will be uncertain.
Resumo:
Ureaplasma infection of the amniotic cavity is associated with adverse postnatal intestinal outcomes. We tested whether interleukin-1 (IL-1) signaling underlies intestinal pathology following ureaplasma exposure in fetal sheep. Pregnant ewes received intra-amniotic injections of ureaplasma or culture media for controls at 3, 7, and 14 d before preterm delivery at 124 d gestation (term 150 d). Intra-amniotic injections of recombinant human interleukin IL-1 receptor antagonist (rhIL-1ra) or saline for controls were given 3 h before and every 2 d after Ureaplasma injection. Ureaplasma exposure caused fetal gut inflammation within 7 d with damaged villus epithelium and gut barrier loss. Proliferation, differentiation, and maturation of enterocytes were significantly reduced after 7 d of ureaplasma exposure, leading to severe villus atrophy at 14 d. Inflammation, impaired development and villus atrophy of the fetal gut was largely prevented by intra-uterine rhIL-1ra treatment. These data form the basis for a clinical understanding of the role of ureaplasma in postnatal intestinal pathologies.
Resumo:
Discourses of public education reform, like that exemplified within the Queensland Government’s future vision document, Queensland State Education-2010 (QSE-2010), position schooling as a panacea to pervasive social instability and a means to achieve a new consensus. However, in unravelling the many conflicting statements that conjoin to form education policy and inform related literature (Ball, 1993), it becomes clear that education reform discourse is polyvalent (Foucault, 1977). Alongside visionary statements that speak of public education as a vehicle for social justice are the (re)visionary or those reflecting neoliberal individualism and a conservative politics. In this paper, it is argued that the latter coagulate to form strategic discursive practices which work to (re)secure dominant relations of power. Further, discussion of the characteristics needed by the “ideal” future citizen of Queensland reflect efforts to ‘tame change through the making of the child’ (Popkewitz, 2004, p.201). The casualties of this (re)vision and the refusal to investigate the pathologies of “traditional” schooling are the children who, for whatever reason, do not conform to the norm of the desired school child as an “ideal” citizen-in-the-making and who become relegated to alternative educational settings.
Resumo:
None of currently used tonometers produce estimated IOP values that are free of errors. Measurement incredibility arises from indirect measurement of corneal deformation and the fact that pressure calculations are based on population averaged parameters of anterior segment. Reliable IOP values are crucial for understanding and monitoring of number of eye pathologies e.g. glaucoma. We have combined high speed swept source OCT with air-puff chamber. System provides direct measurement of deformation of cornea and anterior surface of the lens. This paper describes in details the performance of air-puff ssOCT instrument. We present different approaches of data presentation and analysis. Changes in deformation amplitude appears to be good indicator of IOP changes. However, it seems that in order to provide accurate intraocular pressure values an additional information on corneal biomechanics is necessary. We believe that such information could be extracted from data provided by air-puff ssOCT.
Resumo:
Background: Extracorporeal circulation (ECC), the diversion of blood flow through a circuit located outside of the body, has been one of the major advances in modern medicine. Cardio-pulmonary bypass (CPB), renal dialysis, apheresis and extracorporeal membrane oxygenation (ECMO) are all different forms of ECC. Despite its major benefits, when blood comes into contact with foreign material, both the coagulation and inflammation cascades are activated simultaneously. Short periods of exposure to ECC e.g. CPB (�2 h duration), are known to be associated with haemolysis, coagulopathies, bleeding and inflammation which demand blood product support. Therefore, it is not unexpected that these complications would be exaggerated with prolonged periods of ECC such as in ECMO (days to weeks duration). The variability and complexities of the underlying pathologies of patients requiring ECC makes it difficult to study the cause and effect of these complications. To overcome this problem we developed an ovine (sheep) model of ECC. Method: Healthy female sheep (1–3 y.o.) weighing 40–50 kg were fasted overnight, anaesthetised, intubated and ventilated [1]. Half the group received smoke induced acute lung injury (S-ALI group) (n = 8) and the other half did not (healthy group) (n = 8). Sheep were subsequently cannulated (Medtronic Inc, Minneapolis, MN, USA) and veno-venous ECMO commenced using PLS ECMO circuit and Quadrox D oxygenator (Maquet Cardiopulmonary AG, Hechinger Straße, Germany). There was continuous physiological monitoring and blood was collected at specified time intervals for full blood counts, platelet function analysis (by Multiplate®), routine coagulation and assessment of clot formation and lysis (by ROTEM®). Preliminary results Full blood counts and routine coagulation results from normal healthy sheep were comparable to those of normal human adults. Within 15 min of initiating of ECMO, PT, PTT and EXTEM clot formation time increased, whilst EXTEM maximum clot firmness decreased in both cohorts. Discussion & Conclusions: Preliminary results of sheep from both 2 h ECMO cohorts showed that the anatomy, haematology and coagulation parameters of an adult sheep are comparable to that a human adult. Experiments are currently underway with healthy (n = 8) and S-ALI (n = 8) sheep on ECMO for 24 h. In addition to characterising how ECMO alters haematology and coagulation parameters, we hope that it will also define which blood components will be most effective to correct bleeding or clotting complications during ECMO support.
Resumo:
Highly sensitive infrared (IR) cameras provide high-resolution diagnostic images of the temperature and vascular changes of breasts. These images can be processed to emphasize hot spots that exhibit early and subtle changes owing to pathology. The resulting images show clusters that appear random in shape and spatial distribution but carry class dependent information in shape and texture. Automated pattern recognition techniques are challenged because of changes in location, size and orientation of these clusters. Higher order spectral invariant features provide robustness to such transformations and are suited for texture and shape dependent information extraction from noisy images. In this work, the effectiveness of bispectral invariant features in diagnostic classification of breast thermal images into malignant, benign and normal classes is evaluated and a phase-only variant of these features is proposed. High resolution IR images of breasts, captured with measuring accuracy of ±0.4% (full scale) and temperature resolution of 0.1 °C black body, depicting malignant, benign and normal pathologies are used in this study. Breast images are registered using their lower boundaries, automatically extracted using landmark points whose locations are learned during training. Boundaries are extracted using Canny edge detection and elimination of inner edges. Breast images are then segmented using fuzzy c-means clustering and the hottest regions are selected for feature extraction. Bispectral invariant features are extracted from Radon projections of these images. An Adaboost classifier is used to select and fuse the best features during training and then classify unseen test images into malignant, benign and normal classes. A data set comprising 9 malignant, 12 benign and 11 normal cases is used for evaluation of performance. Malignant cases are detected with 95% accuracy. A variant of the features using the normalized bispectrum, which discards all magnitude information, is shown to perform better for classification between benign and normal cases, with 83% accuracy compared to 66% for the original.
Resumo:
In our laboratory, we have developed methods in real-time detection and quantitative-polymerase chain reaction (Q-PCR) to analyse the relative levels of gene expression in post mortem brain tissues. We have then applied this method to examine differences in gene activity between normal white matter (NWM) and plaque tissue from multiple sclerosis (MS) patients. Genes were selected based on their association with pathology and through identification by previously conducted global gene expression analysis. Plaque tissue was obtained from secondary progressive (SP) patients displaying chronic active, as well as acute pathologies; while NWM from the same location was obtained from age- and sex-matched controls (normal patients). In this study, we used both SYBR Green I supplementation and commercially available mixes to assess both comparative and absolute levels of gene activity. The results of both methods compared favourably for four of the five genes examined (P < 0.05, Pearsons), while differences in gene expression between chronic active and acute pathologies were also identified. For example, a >50-fold increase in osteopontin (Spp1) and inositol 1-4-5 phosphate 3 kinase B (Itpkb) levels in acute plaques contrasted with the 5-fold or less increase in chronic active plaques (P < 0.05, unpaired t test). By contrast, there was no significant difference in the levels of the MS marker and calcium-dependent protease (Calpain, Capns1) in MS plaque tissue. In summary, Q-PCR analysis using SYBR Green I has allowed us to economically obtain what may be clinically significant information from small amounts of the CNS, providing an opportunity for further clinical investigations.
Resumo:
BACKGROUND: Ankle joint equinus, or restricted dorsiflexion range of motion (ROM), has been linked to a range of pathologies of relevance to clinical practitioners. This systematic review and meta-analysis investigated the effects of conservative interventions on ankle joint ROM in healthy individuals and athletic populations. METHODS: Keyword searches of Embase Medline Cochrane and CINAHL databases were performed with the final search being run in August 2013. Studies were eligible for inclusion if they assessed the effect of a non-surgical intervention on ankle joint dorsiflexion in healthy populations. Studies were quality rated using a standard quality assessment scale. Standardised mean differences (SMDs) and 95% confidence intervals (CIs) were calculated and results were pooled where study methods were homogenous. RESULTS: Twenty-three studies met eligibility criteria, with a total of 734 study participants. Results suggest that there is some evidence to support the efficacy of static stretching alone (SMDs: range 0.70 to 1.69) and static stretching in combination with ultrasound (SMDs: range 0.91 to 0.95), diathermy (SMD 1.12), diathermy and ice (SMD 1.16), heel raise exercises (SMDs: range 0.70 to 0.77), superficial moist heat (SMDs: range 0.65 to 0.84) and warm up (SMD 0.87) in improving ankle joint dorsiflexion ROM. CONCLUSIONS: Some evidence exists to support the efficacy of stretching alone and stretching in combination with other therapies in increasing ankle joint ROM in healthy individuals. There is a paucity of quality evidence to support the efficacy of other non-surgical interventions, thus further research in this area is warranted.
Resumo:
Dermal wound repair involves complex interactions between cells, cytokines and mechanics to close injuries to the skin. In particular, we investigate the contribution of fibroblasts, myofibroblasts, TGFβ, collagen and local tissue mechanics to wound repair in the human dermis. We develop a morphoelastic model where a realistic representation of tissue mechanics is key, and a fibrocontractive model that involves a reasonable approximation to the true kinetics of the important bioactive species. We use each of these descriptions to elucidate the mechanisms that generate pathologies such as hypertrophic scars, contractures and keloids. We find that for hypertrophic scar and contracture development, factors regulating the myofibroblast phenotype are critical, with heightened myofibroblast activation, reduced myofibroblast apoptosis or prolonged inflammation all predicted as mediators for scar hypertrophy and contractures. Prevention of these pathologies is predicted when myofibroblast apoptosis is induced, myofibroblast activation is blocked or TGFβ is neutralised. To investigate keloid invasion, we develop a caricature representation of the fibrocontractive model and find that TGFβ spread is the driving factor behind keloid growth. Blocking activation of TGFβ is found to cause keloid regression. Thus, we recommend myofibroblasts and TGFβ as targets for clinicians when developing intervention strategies for prevention and cure of fibrotic scars.
Resumo:
Dendritic cells (DCs) play critical roles in immune-mediated kidney diseases. Little is known, however, about DC subsets in human chronic kidney disease, with previous studies restricted to a limited set of pathologies and to using immunohistochemical methods. In this study, we developed novel protocols for extracting renal DC subsets from diseased human kidneys and identified, enumerated, and phenotyped them by multicolor flow cytometry. We detected significantly greater numbers of total DCs as well as CD141(hi) and CD1c(+) myeloid DC (mDCs) subsets in diseased biopsies with interstitial fibrosis than diseased biopsies without fibrosis or healthy kidney tissue. In contrast, plasmacytoid DC numbers were significantly higher in the fibrotic group compared with healthy tissue only. Numbers of all DC subsets correlated with loss of kidney function, recorded as estimated glomerular filtration rate. CD141(hi) DCs expressed C-type lectin domain family 9 member A (CLEC9A), whereas the majority of CD1c(+) DCs lacked the expression of CD1a and DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), suggesting these mDC subsets may be circulating CD141(hi) and CD1c(+) blood DCs infiltrating kidney tissue. Our analysis revealed CLEC9A(+) and CD1c(+) cells were restricted to the tubulointerstitium. Notably, DC expression of the costimulatory and maturation molecule CD86 was significantly increased in both diseased cohorts compared with healthy tissue. Transforming growth factor-β levels in dissociated tissue supernatants were significantly elevated in diseased biopsies with fibrosis compared with nonfibrotic biopsies, with mDCs identified as a major source of this profibrotic cytokine. Collectively, our data indicate that activated mDC subsets, likely recruited into the tubulointerstitium, are positioned to play a role in the development of fibrosis and, thus, progression to chronic kidney disease.
Resumo:
Bone, tendon, and cartilage are highly specialized musculoskeletal connective tissues that are subject to injury and degeneration. These tissues have relatively poor healing capabilities, and coupled with their variable response to established medical treatments, produce significant morbidity. Mesenchymal stem cells (MSCs) are capable of regenerating skeletal tissues and therefore offer great promise in the treatment of connective tissue pathologies. Adult MSCs are multipotent cells that possess the properties of proliferation and differentiation into all connective tissues. Furthermore, they can be gene modified to secrete growth factors and utilized in connective tissue engineering. Potential MSC-based therapies for bone and tendon conditions are reviewed in this chapter.