120 resultados para Pathogenic microorganisms.
em Queensland University of Technology - ePrints Archive
Resumo:
Biomaterials play a fundamental role in disease management and the improvement of health care. In recent years, there has been a significant growth in the diversity, function, and number of biomaterials used worldwide. Yet, attachment of pathogenic microorganisms onto biomaterial surfaces remains a significant challenge that substantially undermines their clinical applicability, limiting the advancement of these systems. The emergence and escalating pervasiveness of antibiotic-resistant bacterial strains makes the management of biomaterial-associated nosocomial infections increasingly difficult. The conventional post-operative treatment of implant-caused infections using systemic antibiotics is often marginally effective, further accelerating the extent of antimicrobial resistance. Methods by which the initial stages of bacterial attachment and biofilm formation can be restricted or prevented are therefore sought. The surface modification of biomaterials has the potential to alleviate pathogenic biofouling, therefore preventing the need for conventional antibiotics to be applied.
Resumo:
The study aimed to evaluate the suitability of Escherichia coli, enterococci and C. perfringens to assess the microbiological quality of roof harvested rainwater, and to assess whether the concentrations of these faecal indicators can be used to predict the presence or absence of specific zoonotic bacterial or protozoan pathogens. From a total of 100 samples tested, respectively 58%, 83% and 46% of samples were found to be positive for E. coli, enterococci and C. perfringens spores, as determined by traditional culture based methods. Additionally, in the samples tested, 7%, 19%, 1%, 8%, 17%, and 15% were PCR positive for A. hydrophila lip, C. coli ceuE, C. jejuni mapA, L. pneumophila mip, Salmonella invA, and G. lamblia β-giardin genes. However, none of the samples was positive for E. coli O157 LPS, VT1, VT2 and C. parvum COWP genes. The presence or absence of these potential pathogens did not correlate with any of the faecal indicator bacterial concentrations as determined by a binary logistic regression model. The roof-harvested rainwater samples tested in this study appear to be of poor microbiological quality and no significant correlation was found between the concentration of faecal indicators and pathogenic microorganisms. The use of faecal indicator bacteria raises questions regarding their reliability in assessing the microbiological quality of water and particularly their poor correlation with pathogenic microorganisms. The presence of one or more zoonotic pathogens suggests that the microbiological analysis of water should be performed, and appropriate treatment measures should be undertaken especially in tanks where the water is used for drinking.
Resumo:
Diarrhoea is one of the leading causes of morbidity and mortality in populations in developing countries and is a significant health issue throughout the world. Despite the frequency and the severity of the diarrhoeal disease, mechanisms of pathogenesis for many of the causative agents have been poorly characterised. Although implicated in a number of intestinal and extra-intestinal infections in humans, Plesiomonas shigelloides generally has been dismissed as an enteropathogen due to the lack of clearly demonstrated virulence-associated properties such as production of cytotoxins and enterotoxins or invasive abilities. However, evidence from a number of sources has indicated that this species may be the cause of a number of clinical infections. The work described in this thesis seeks to resolve this discrepancy by investigating the pathogenic potential of P. shigelloides using in vitro cell models. The focus of this research centres on how this organism interacts with human host cells in an experimental model. Very little is known about the pathogenic potential of P. shigel/oides and its mechanisms in human infections and disease. However, disease manifestations mimic those of other related microorganisms. Chapter 2 reviews microbial pathogenesis in general, with an emphasis on understanding the mechanisms resulting from infection with bacterial pathogens and the alterations in host cell biology. In addition, this review analyses the pathogenic status of a poorly-defined enteropathogen, P. shigelloides. Key stages of pathogenicity must occur in order for a bacterial pathogen to cause disease. Such stages include bacterial adherence to host tissue, bacterial entry into host tissues (usually required), multiplication within host tissues, evasion of host defence mechanisms and the causation of damage. In this study, these key strategies in infection and disease were sought to help assess the pathogenic potential of P. shigelloides (Chapter 3). Twelve isolates of P. shigelloides, obtained from clinical cases of gastroenteritis, were used to infect monolayers of human intestinal epithelial cells in vitro. Ultrastructural analysis demonstrated that P. shigelloides was able to adhere to the microvilli at the apical surface of the epithelial cells and also to the plasma membranes of both apical and basal surfaces. Furthermore, it was demonstrated that these isolates were able to enter intestinal epithelial cells. Internalised bacteria often were confined within vacuoles surrounded by single or multiple membranes. Observation of bacteria within membranebound vacuoles suggests that uptake of P. shigelloides into intestinal epithelial cells occurs via a process morphologically comparable to phagocytosis. Bacterial cells also were observed free in the host cell cytoplasm, indicating that P. shige/loides is able to escape from the surrounding vacuolar membrane and exist within the cytosol of the host. Plesiomonas shigelloides has not only been implicated in gastrointestinal infections, but also in a range of non-intestinal infections such as cholecystitis, proctitis, septicaemia and meningitis. The mechanisms by which P. shigelloides causes these infections are not understood. Previous research was unable to ascertain the pathogenic potential of P. shigel/oides using cells of non-intestinal origin (HEp-2 cells derived from a human larynx carcinoma and Hela cells derived from a cervical carcinoma). However, with the recent findings (from this study) that P. shigelloides can adhere to and enter intestinal cells, it was hypothesised, that P. shigel/oides would be able to enter Hela and HEp-2 cells. Six clinical isolates of P. shigelloides, which previously have been shown to be invasive to intestinally derived Caco-2 cells (Chapter 3) were used to study interactions with Hela and HEp-2 cells (Chapter 4). These isolates were shown to adhere to and enter both nonintestinal host cell lines. Plesiomonas shigelloides were observed within vacuoles surrounded by single and multiple membranes, as well as free in the host cell cytosol, similar to infection by P. shigelloides of Caco-2 cells. Comparisons of the number of bacteria adhered to and present intracellularly within Hela, HEp-2 and Caco-2 cells revealed a preference of P. shigelloides for Caco-2 cells. This study conclusively showed for the first time that P. shigelloides is able to enter HEp-2 and Hela cells, demonstrating the potential ability to cause an infection and/or disease of extra-intestinal sites in humans. Further high resolution ultrastructural analysis of the mechanisms involved in P. shigelloides adherence to intestinal epithelial cells (Chapter 5) revealed numerous prominent surface features which appeared to be involved in the binding of P. shige/loides to host cells. These surface structures varied in morphology from small bumps across the bacterial cell surface to much longer filaments. Evidence that flagella might play a role in bacterial adherence also was found. The hypothesis that filamentous appendages are morphologically expressed when in contact with host cells also was tested. Observations of bacteria free in the host cell cytosol suggests that P. shigelloides is able to lyse free from the initial vacuolar compartment. The vacuoles containing P. shigel/oides within host cells have not been characterised and the point at which P. shigelloides escapes from the surrounding vacuolar compartment has not been determined. A cytochemical detection assay for acid phosphatase, an enzymatic marker for lysosomes, was used to analyse the co-localisation of bacteria-containing vacuoles and acid phosphatase activity (Chapter 6). Acid phosphatase activity was not detected in these bacteria-containing vacuoles. However, the surface of many intracellular and extracellular bacteria demonstrated high levels of acid phosphatase activity, leading to the proposal of a new virulence factor for P. shigelloides. For many pathogens, the efficiency with which they adhere to and enter host cells is dependant upon the bacterial phase of growth. Such dependency reflects the timing of expression of particular virulence factors important for bacterial pathogenesis. In previous studies (Chapter 3 to Chapter 6), an overnight culture of P. shigelloides was used to investigate a number of interactions, however, it was unknown whether this allowed expression of bacterial factors to permit efficient P. shigelloides attachment and entry into human cells. In this study (Chapter 7), a number of clinical and environmental P. shigelloides isolates were investigated to determine whether adherence and entry into host cells in vitro was more efficient during exponential-phase or stationary-phase bacterial growth. An increase in the number of adherent and intracellular bacteria was demonstrated when bacteria were inoculated into host cell cultures in exponential phase cultures. This was demonstrated clearly for 3 out of 4 isolates examined. In addition, an increase in the morphological expression of filamentous appendages, a suggested virulence factor for P. shigel/oides, was observed for bacteria in exponential growth phase. These observations suggest that virulence determinants for P. shigel/oides may be more efficiently expressed when bacteria are in exponential growth phase. This study demonstrated also, for the first time, that environmental water isolates of P. shigelloides were able to adhere to and enter human intestinal cells in vitro. These isolates were seen to enter Caco-2 host cells through a process comparable to the clinical isolates examined. These findings support the hypothesis of a water transmission route for P. shigelloides infections. The results presented in this thesis contribute significantly to our understanding of the pathogenic mechanisms involved in P. shigelloides infections and disease. Several of the factors involved in P. shigelloides pathogenesis have homologues in other pathogens of the human intestine, namely Vibrio, Aeromonas, Salmonella, Shigella species and diarrhoeaassociated strains of Escherichia coli. This study emphasises the relevance of research into Plesiomonas as a means of furthering our understanding of bacterial virulence in general. As well it provides tantalising clues on normal and pathogenic host cell mechanisms.
Resumo:
Since its initial description as a Th2-cytokine antagonistic to interferon-alpha and granulocyte-macrophage colony-stimulating factor, many studies have shown various anti-inflammatory actions of interleukin-10 (IL-10), and its role in infection as a key regulator of innate immunity. Studies have shown that IL-10 induced in response to microorganisms and their products plays a central role in shaping pathogenesis. IL-10 appears to function as both sword and shield in the response to varied groups of microorganisms in its capacity to mediate protective immunity against some organisms but increase susceptibility to other infections. The nature of IL-10 as a pleiotropic modulator of host responses to microorganisms is explained, in part, by its potent and varied effects on different immune effector cells which influence antimicrobial activity. A new understanding of how microorganisms trigger IL-10 responses is emerging, along with recent discoveries of how IL-10 produced during disease might be harnessed for better protective or therapeutic strategies. In this review, we summarize studies from the past 5 years that have reported the induction of IL-10 by different classes of pathogenic microorganisms, including protozoa, nematodes, fungi, viruses and bacteria and discuss the impact of this induction on the persistence and/or clearance of microorganisms in the host.
Resumo:
Proteases with important roles for bacterial pathogens which specifically reside within intracellular vacuoles are frequently homologous to those which have important virulence functions for other bacteria. Research has identified that some of these conserved proteases have evolved specialised functions for intracellular vacuole residing bacteria. Unique proteases with pathogenic functions have also been described from Chlamydia, Mycobacteria, and Legionella. These findings suggest that there are further novel functions for proteases from these bacteria which remain to be described. This review summarises recent findings of novel protease functions from the intracellular human pathogenic bacteria which reside exclusively in vacuoles.
Resumo:
Introduction: Degradative enzymes, such as A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and matrix metalloproteinases (MMPs), play key roles in osteoarthritis (OA) development. The aim of the present study was to investigate if cross-talk between subchondral bone osteoblasts (SBOs) and articular cartilage chondrocytes (ACCs) in OA alters the expression and regulation of ADAMTS5, ADAMTS4, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9 and MMP-13, and also to test the possible involvement of mitogen activated protein kinase (MAPK) signaling pathway during this process. Methods: ACCs and SBOs were isolated from normal and OA patients. An in vitro co-culture model was developed to study the regulation of ADAMTS and MMPs under normal and OA joint cross-talk conditions. MAPK-ERK inhibitor, PD98059 was applied to delineate the involvement of specific pathway during this interaction process. Results: Indirect co-culture of OA SBOs with normal ACCs resulted in significantly increased expression of ADAMTS5, ADAMTS4, MMP-2, MMP-3 and MMP-9 in ACCs, whereas co-culture of OA ACCs led to increased MMP-1 and MMP-2 expression in normal SBOs. The upregulation of ADAMTS and MMPs under these conditions was correlated with activation of the MAPK-ERK1/2 signaling pathway and the addition of the MAPK-ERK inhibitor, PD98059, reversed the overexpression of ADAMTS and MMPs in co-cultures. Conclusion: In summary, we believe, these results add to the evidence that in human OA, altered bi-directional signals transmitted between SBOs and ACCs significantly impacts the critical features of both cartilage and bone by producing abnormal levels of ADAMTS and MMPs. Furthermore, we have demonstrated for the first time that this altered cross-talk was mediated by the phosphorylation of MAPK-ERK1/2 signaling pathway.
Resumo:
Staphylococci are important pathogenic bacteria responsible for a range of diseases in humans. The most frequently isolated microorganisms in a hospital microbiology laboratory are staphylococci. The general classification of staphylococci divides them into two major groups; Coagulase-positive staphylococci (e.g. Staphylococcus aureus) and Coagulase-negative staphylococci (e.g. Staphylococcus epidermidis). Coagulase-negative staphylococcal (CoNS) isolates include a variety of species and many different strains but are often dominated by the most important organism of this group, S. epidermidis. Currently, these organisms are regarded as important pathogenic organisms causing infections related to prosthetic materials and surgical wounds. A significant number of S. epidermidis isolates are also resistant to different antimicrobial agents. Virulence factors in CoNS are not very clearly established and not well documented. S. epidermidis is evolving as a resistant and powerful microbe related to nosocomial infections because it has different properties which independently, and in combination, make it a successful infectious agent, especially in the hospital environment. Such characteristics include biofilm formation, drug resistance and the evolution of genetic variables. The purpose of this project was to develop a novel SNP genotyping method to genotype S. epidermidis strains originating from hospital patients and healthy individuals. High-Resolution Melt Analysis was used to assign binary typing profiles to both clinical and commensal strains using a new bioinformatics approach. The presence of antibiotic resistance genes and biofilm coding genes were also interrogated in these isolates.
Resumo:
Our previous study reported microorganisms in human follicular fluid. The objective of this study was to test human follicular fluid for the presence of microorganisms and to correlate these findings with the in vitro fertilization (IVF) outcomes. In this study, 263 paired follicular fluids and vaginal swabs were collected from women undergoing IVF cycles, with various causes for infertility, and were cultured to detect microorganisms. The cause of infertility and the IVF outcomes for each woman were correlated with the microorganisms detected within follicular fluid collected at the time of trans-vaginal oocyte retrieval. Microorganisms isolated from follicular fluids were classified as: (1) ‘colonizers’ if microorganisms were detected within the follicular fluid, but not within the vaginal swab (at the time of oocyte retrieval); or (2) ‘contaminants’ if microorganisms detected in the vagina at the time of oocyte retrieval were also detected within the follicular fluid. The presence of Lactobacillus spp. in ovarian follicular fluids was associated with embryo maturation and transfer. This study revealed microorganisms in follicular fluid itself and that the presence of particular microorganisms has an adverse affect on IVF outcomes as seen by an overall decrease in embryo transfer rates and pregnancy rates in both fertile and infertile women, and live birth rates in women with idiopathic infertility. Follicular fluid microorganisms are a potential cause of adverse pregnancy outcomes in IVF in both infertile women and in fertile women with infertile male partners.
Resumo:
Recently we reported the presence of bacteria within follicular fluid. Previous studies have reported that DNA fragmentation in human spermatozoa after in vivo or in vitro incubation with bacteria results in early embryo demise and a reduced rate of ongoing pregnancy, but the effect of bacteria on oocytes is unknown. This study examined the DNA within mouse oocytes after 12 hours’ incubation within human follicular fluids (n = 5), which were collected from women undergoing in vitro fertilization (IVF) treatment. Each follicular fluid sample was cultured to detect the presence of bacteria. Terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) was used to label DNA fragmentation in ovulated, non-fertilized mouse oocytes following in vitro incubation in human follicular fluid. The bacteria Streptococcus anginosus and Peptoniphilus spp., Lactobacillus gasseri (low-dose), L. gasseri (high-dose), Enterococcus faecalis, or Propionibacterium acnes were detected within the follicular fluids. The most severe DNA fragmentation was observed in oocytes incubated in the follicular fluids containing P. acnes or L. gasseri (high-dose). No DNA fragmentation was observed in the mouse oocytes incubated in the follicular fluid containing low-dose L. gasseri or E. faecalis. Low human oocyte fertilization rates (<29%) were associated with extensive fragmentation in mouse oocytes (80–100%). Bacteria colonizing human follicular fluid in vivo may cause DNA fragmentation in mouse oocytes following 12 h of in vitro incubation. Follicular fluid bacteria may result in poor quality oocytes and/or embryos, leading to poor IVF outcomes.
Resumo:
Trimeric autotransporter proteins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. A common feature of most TAAs is the ability to mediate adherence to eukaryotic cells or extracellular matrix (ECM) proteins via a cell surface-exposed passenger domain. Here we describe the characterization of EhaG, a TAA identified from enterohemorrhagic Escherichia coli (EHEC) O157:H7. EhaG is a positional orthologue of the recently characterized UpaG TAA from uropathogenic E. coli (UPEC). Similarly to UpaG, EhaG localized at the bacterial cell surface and promoted cell aggregation, biofilm formation, and adherence to a range of ECM proteins. However, the two orthologues display differential cellular binding: EhaG mediates specific adhesion to colorectal epithelial cells while UpaG promotes specific binding to bladder epithelial cells. The EhaG and UpaG TAAs contain extensive sequence divergence in their respective passenger domains that could account for these differences. Indeed, sequence analyses of UpaG and EhaG homologues from several E. coli genomes revealed grouping of the proteins in clades almost exclusively represented by distinct E. coli pathotypes. The expression of EhaG (in EHEC) and UpaG (in UPEC) was also investigated and shown to be significantly enhanced in an hns isogenic mutant, suggesting that H-NS acts as a negative regulator of both TAAs. Thus, while the EhaG and UpaG TAAs contain some conserved binding and regulatory features, they also possess important differences that correlate with the distinct pathogenic lifestyles of EHEC and UPEC.
Resumo:
Oleaginous microorganisms have potential to be used to produce oils as alternative feedstock for biodiesel production. Microalgae (Chlorella protothecoides and Chlorella zofingiensis), yeasts (Cryptococcus albidus and Rhodotorula mucilaginosa), and fungi (Aspergillus oryzae and Mucor plumbeus) were investigated for their ability to produce oil from glucose, xylose and glycerol. Multi-criteria analysis (MCA) using analytic hierarchy process (AHP) and preference ranking organization method for the enrichment of evaluations (PROMETHEE) with graphical analysis for interactive aid (GAIA), was used to rank and select the preferred microorganisms for oil production for biodiesel application. This was based on a number of criteria viz., oil concentration, content, production rate and yield, substrate consumption rate, fatty acids composition, biomass harvesting and nutrient costs. PROMETHEE selected A. oryzae, M. plumbeus and R. mucilaginosa as the most prospective species for oil production. However, further analysis by GAIA Webs identified A. oryzae and M. plumbeus as the best performing microorganisms.
Resumo:
Generation of effective immune responses against pathogenic microbes depends on a fine balance between pro- and anti-inflammatory responses. Interleukin-10 (IL-10) is essential in regulating this balance and has garnered renewed interest recently as a modulator of the response to infection at the JAK-STAT signaling axis of host responses. Here, we examine how IL-10 functions as the “master regulator” of immune responses through JAK-STAT, and provide a perspective from recent insights on bacterial, protozoan, and viral infection model systems. Pattern recognition and subsequent molecular events that drive activation of IL-10-associated JAK-STAT circuitry are reviewed and the implications for microbial pathogenesis are discussed.
Resumo:
For the last two decades heart disease has been the highest single cause of death for the human population. With an alarming number of patients requiring heart transplant, and donations not able to satisfy the demand, treatment looks to mechanical alternatives. Rotary Ventricular Assist Devices, VADs, are miniature pumps which can be implanted alongside the heart to assist its pumping function. These constant flow devices are smaller, more efficient and promise a longer operational life than more traditional pulsatile VADs. The development of rotary VADs has focused on single pumps assisting the left ventricle only to supply blood for the body. In many patients however, failure of both ventricles demands that an additional pulsatile device be used to support the failing right ventricle. This condition renders them hospital bound while they wait for an unlikely heart donation. Reported attempts to use two rotary pumps to support both ventricles concurrently have warned of inherent haemodynamic instability. Poor balancing of the pumps’ flow rates quickly leads to vascular congestion increasing the risk of oedema and ventricular ‘suckdown’ occluding the inlet to the pump. This thesis introduces a novel Bi-Ventricular Assist Device (BiVAD) configuration where the pump outputs are passively balanced by vascular pressure. The BiVAD consists of two rotary pumps straddling the mechanical passive controller. Fluctuations in vascular pressure induce small deflections within both pumps adjusting their outputs allowing them to maintain arterial pressure. To optimise the passive controller’s interaction with the circulation, the controller’s dynamic response is optimised with a spring, mass, damper arrangement. This two part study presents a comprehensive assessment of the prototype’s ‘viability’ as a support device. Its ‘viability’ was considered based on its sensitivity to pathogenic haemodynamics and the ability of the passive response to maintain healthy circulation. The first part of the study is an experimental investigation where a prototype device was designed and built, and then tested in a pulsatile mock circulation loop. The BiVAD was subjected to a range of haemodynamic imbalances as well as a dynamic analysis to assess the functionality of the mechanical damper. The second part introduces the development of a numerical program to simulate human circulation supported by the passively controlled BiVAD. Both investigations showed that the prototype was able to mimic the native baroreceptor response. Simulating hypertension, poor flow balancing and subsequent ventricular failure during BiVAD support allowed the passive controller’s response to be assessed. Triggered by the resulting pressure imbalance, the controller responded by passively adjusting the VAD outputs in order to maintain healthy arterial pressures. This baroreceptor-like response demonstrated the inherent stability of the auto regulating BiVAD prototype. Simulating pulmonary hypertension in the more observable numerical model, however, revealed a serious issue with the passive response. The subsequent decrease in venous return into the left heart went unnoticed by the passive controller. Meanwhile the coupled nature of the passive response not only decreased RVAD output to reduce pulmonary arterial pressure, but it also increased LVAD output. Consequently, the LVAD increased fluid evacuation from the left ventricle, LV, and so actually accelerated the onset of LV collapse. It was concluded that despite the inherently stable baroreceptor-like response of the passive controller, its lack of sensitivity to venous return made it unviable in its present configuration. The study revealed a number of other important findings. Perhaps the most significant was that the reduced pulse experienced during constant flow support unbalanced the ratio of effective resistances of both vascular circuits. Even during steady rotary support therefore, the resulting ventricle volume imbalance increased the likelihood of suckdown. Additionally, mechanical damping of the passive controller’s response successfully filtered out pressure fluctuations from residual ventricular function. Finally, the importance of recognising inertial contributions to blood flow in the atria and ventricles in a numerical simulation were highlighted. This thesis documents the first attempt to create a fully auto regulated rotary cardiac assist device. Initial results encourage development of an inlet configuration sensitive to low flow such as collapsible inlet cannulae. Combining this with the existing baroreceptor-like response of the passive controller will render a highly stable passively controlled BiVAD configuration. The prototype controller’s passive interaction with the vasculature is a significant step towards a highly stable new generation of artificial heart.
Resumo:
Sugarcane orange rust, caused by Puccinia kuehnii, was once considered a minor disease in the Australian sugar industry. However, in 2000 a new race of the pathogen devastated the high-performing sugarcane cultivar Q124, and caused the industry Aus$150–210 million in yield losses. At the time of the epidemic, very little was known about the genetic and pathogenic diversity of the fungus in Australia and neighbouring sugar industries. DNA sequence data from three rDNA regions were used to determine the genetic relationships between isolates within two P. kuehnii collections. The first collection comprised only recent Australian field isolates and limited sequence variation was detected within this population. In the second study, Australian isolates were compared with isolates from Papua New Guinea, Indonesia, China and historical herbarium collections. Greater sequence variation was detected in this collection and phylogenetic analyses grouped the isolates into three clades. All isolates from commercial cane fields clustered together including the recent Australianfield isolates and the Australian historical isolate from 1898.The other two clades included rust isolates from wild and garden canes in Indonesia and PNG. These rusts appeared morphologically similar to P. kuehnii and could potentially pose a quarantine threat to the Australian sugar industry. The results have revealed greater diversity in sugarcane rusts than previously thought.