71 resultados para Parallel and distributed systems
em Queensland University of Technology - ePrints Archive
Resumo:
Solving large-scale all-to-all comparison problems using distributed computing is increasingly significant for various applications. Previous efforts to implement distributed all-to-all comparison frameworks have treated the two phases of data distribution and comparison task scheduling separately. This leads to high storage demands as well as poor data locality for the comparison tasks, thus creating a need to redistribute the data at runtime. Furthermore, most previous methods have been developed for homogeneous computing environments, so their overall performance is degraded even further when they are used in heterogeneous distributed systems. To tackle these challenges, this paper presents a data-aware task scheduling approach for solving all-to-all comparison problems in heterogeneous distributed systems. The approach formulates the requirements for data distribution and comparison task scheduling simultaneously as a constrained optimization problem. Then, metaheuristic data pre-scheduling and dynamic task scheduling strategies are developed along with an algorithmic implementation to solve the problem. The approach provides perfect data locality for all comparison tasks, avoiding rearrangement of data at runtime. It achieves load balancing among heterogeneous computing nodes, thus enhancing the overall computation time. It also reduces data storage requirements across the network. The effectiveness of the approach is demonstrated through experimental studies.
Resumo:
Distributed Denial of Services DDoS, attacks has become one of the biggest threats for resources over Internet. Purpose of these attacks is to make servers deny from providing services to legitimate users. These attacks are also used for occupying media bandwidth. Currently intrusion detection systems can just detect the attacks but cannot prevent / track the location of intruders. Some schemes also prevent the attacks by simply discarding attack packets, which saves victim from attack, but still network bandwidth is wasted. In our opinion, DDoS requires a distributed solution to save wastage of resources. The paper, presents a system that helps us not only in detecting such attacks but also helps in tracing and blocking (to save the bandwidth as well) the multiple intruders using Intelligent Software Agents. The system gives dynamic response and can be integrated with the existing network defense systems without disturbing existing Internet model. We have implemented an agent based networking monitoring system in this regard.
Resumo:
Advances in solid-state switches and power electronics techniques have led to the development of compact, efficient and more reliable pulsed power systems. Although, the power rating and operation speed of the new solid-state switches are considerably increased, their low blocking voltage level puts a limits in the pulsed power operation. This paper proposes the advantage of parallel and series configurations of pulsed power modules in obtaining high voltage levels with fast rise time (dv/dt) using only conventional switches. The proposed configuration is based on two flyback modules. The effectiveness of the proposed approach is verified by numerical simulations, and the advantages of each configuration are indicated in comparison with a single module.
Resumo:
With the explosive growth of resources available through the Internet, information mismatching and overload have become a severe concern to users. Web users are commonly overwhelmed by huge volume of information and are faced with the challenge of finding the most relevant and reliable information in a timely manner. Personalised information gathering and recommender systems represent state-of-the-art tools for efficient selection of the most relevant and reliable information resources, and the interest in such systems has increased dramatically over the last few years. However, web personalization has not yet been well-exploited; difficulties arise while selecting resources through recommender systems from a technological and social perspective. Aiming to promote high quality research in order to overcome these challenges, this paper provides a comprehensive survey on the recent work and achievements in the areas of personalised web information gathering and recommender systems. The report covers concept-based techniques exploited in personalised information gathering and recommender systems.
Resumo:
This project was a step forward in developing intrusion detection systems in distributed environments such as web services. It investigates a new approach of detection based on so-called "taint-marking" techniques and introduces a theoretical framework along with its implementation in the Linux kernel.
Resumo:
This paper presents a new framework for distributed intrusion detection based on taint marking. Our system tracks information flows between applications of multiple hosts gathered in groups (i.e., sets of hosts sharing the same distributed information flow policy) by attaching taint labels to system objects such as files, sockets, Inter Process Communication (IPC) abstractions, and memory mappings. Labels are carried over the network by tainting network packets. A distributed information flow policy is defined for each group at the host level by labeling information and defining how users and applications can legally access, alter or transfer information towards other trusted or untrusted hosts. As opposed to existing approaches, where information is most often represented by two security levels (low/high, public/private, etc.), our model identifies each piece of information within a distributed system, and defines their legal interaction in a fine-grained manner. Hosts store and exchange security labels in a peer to peer fashion, and there is no central monitor. Our IDS is implemented in the Linux kernel as a Linux Security Module (LSM) and runs standard software on commodity hardware with no required modification. The only trusted code is our modified operating system kernel. We finally present a scenario of intrusion in a web service running on multiple hosts, and show how our distributed IDS is able to report security violations at each host level.
Resumo:
Understanding the dynamics of disease spread is essential in contexts such as estimating load on medical services, as well as risk assessment and interven- tion policies against large-scale epidemic outbreaks. However, most of the information is available after the outbreak itself, and preemptive assessment is far from trivial. Here, we report on an agent-based model developed to investigate such epidemic events in a stylised urban environment. For most diseases, infection of a new individual may occur from casual contact in crowds as well as from repeated interactions with social partners such as work colleagues or family members. Our model therefore accounts for these two phenomena. Given the scale of the system, efficient parallel computing is required. In this presentation, we focus on aspects related to paralllelisation for large networks generation and massively multi-agent simulations.
Resumo:
Public buildings and large infrastructure are typically monitored by tens or hundreds of cameras, all capturing different physical spaces and observing different types of interactions and behaviours. However to date, in large part due to limited data availability, crowd monitoring and operational surveillance research has focused on single camera scenarios which are not representative of real-world applications. In this paper we present a new, publicly available database for large scale crowd surveillance. Footage from 12 cameras for a full work day covering the main floor of a busy university campus building, including an internal and external foyer, elevator foyers, and the main external approach are provided; alongside annotation for crowd counting (single or multi-camera) and pedestrian flow analysis for 10 and 6 sites respectively. We describe how this large dataset can be used to perform distributed monitoring of building utilisation, and demonstrate the potential of this dataset to understand and learn the relationship between different areas of a building.