5 resultados para PEDOT

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the electropolymerization of poly(3,4-ethylenedioxythiopene) (PEDOT) from an ionic liquid, butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (C4mpyrTFSI) onto flexible carbon cloth electrodes. A continuous, homogeneous and well adhered coating of the individual cloth fibres is achieved by employing a sandwich cell arrangement where the carbon cloth which is soaked with electrolyte is placed between two indium tin oxide electrodes isolated from each other by a battery separator. The resultant PEDOT modified carbon cloth electrode demonstrates excellent activity for the oxygen reduction reaction which is due to the doping level, conductivity and morphology of the PEDOT layer and is also tolerant to the presence of methanol in the electrolyte. This simple approach therefore offers a route to fabricate flexible polymer electrodes that could be used in various electronic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/squ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flexible multilayer electrodes that combine high transparency, high conductivity, and efficient charge extraction have been deposited, characterised and used as the anode in organic solar cells. The anode consists of an AZO/Ag/AZO stack plus a very thin oxide interlayer whose ionization potential is fine-tuned by manipulating its gap state density to optimise charge transfer with the bulk heterojunction active layer consisting of poly(n-3- hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT:BC61BM). The deposition method for the stack was compatible with the low temperatures required for polymer substrates. Optimisation of the electrode stack was achieved by modelling the optical and electrical properties of the device and a power conversion efficiency of 2.9% under AM1.5 illumination compared to 3.0% with an ITO-only anode and 3.5% for an ITO:PEDOT electrode. Dark I-V reverse bias characteristics indicate very low densities of occupied buffer states close to the HOMO level of the hole conductor, despite observed ionization potential being high enough. Their elimination should raise efficiency to that with ITO:PEDOT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction at the interface between a metal electrode and photoactive polymer is crucial for overall performance and stability of organic photovoltaics (OPVs). In this article, we report a comparative study of the stability of thin film Ag and indium tin oxide (ITO) as electrodes when used in conjunction with an interfacial PEDOT:PSS layer for P3HT:PCBM blend OPV devices. XPS measurements were taken for Ag and ITO/PEDOT:PSS layered samples with different exposure times to ambient conditions (∼25 °C, ∼50% relative humidity) to investigate the migration of Ag and In into the PEDOT:PSS layer. The change in efficiency of OPVs with a longer exposure time and degree of migration is explained by the analysis of XPS results. We propose the mechanism behind the interactions occurring at the interfaces. The efficiency of the ITO electrode OPVs continuously decreased to below 10% of the initial efficiency. However, the Ag devices displayed a slower degradation and maintained 50% of the initial efficiency for the same period of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A roll-to-roll compatible, high throughput process is reported for the production of highly conductive, transparent planar electrode comprising an interwoven network of silver nanowires and single walled carbon nanotubes imbedded into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The planar electrode has a sheet resistance of between 4 and 7 Ω □−1 and a transmission of >86% between 800 and 400 nm with a figure of merit of between 344 and 400 Ω−1. The nanocomposite electrode is highly flexible and retains a low sheet resistance after bending at a radius of 5 mm for up to 500 times without loss. Organic photovoltaic devices containing the planar nanocomposite electrodes had efficiencies of ∼90% of control devices that used indium tin oxide as the transparent conducting electrode.