2 resultados para PDO

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot spot identification (HSID) plays a significant role in improving the safety of transportation networks. Numerous HSID methods have been proposed, developed, and evaluated in the literature. The vast majority of HSID methods reported and evaluated in the literature assume that crash data are complete, reliable, and accurate. Crash under-reporting, however, has long been recognized as a threat to the accuracy and completeness of historical traffic crash records. As a natural continuation of prior studies, the paper evaluates the influence that under-reported crashes exert on HSID methods. To conduct the evaluation, five groups of data gathered from Arizona Department of Transportation (ADOT) over the course of three years are adjusted to account for fifteen different assumed levels of under-reporting. Three identification methods are evaluated: simple ranking (SR), empirical Bayes (EB) and full Bayes (FB). Various threshold levels for establishing hotspots are explored. Finally, two evaluation criteria are compared across HSID methods. The results illustrate that the identification bias—the ability to correctly identify at risk sites--under-reporting is influenced by the degree of under-reporting. Comparatively speaking, crash under-reporting has the largest influence on the FB method and the least influence on the SR method. Additionally, the impact is positively related to the percentage of the under-reported PDO crashes and inversely related to the percentage of the under-reported injury crashes. This finding is significant because it reveals that despite PDO crashes being least severe and costly, they have the most significant influence on the accuracy of HSID.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot spot identification (HSID) aims to identify potential sites—roadway segments, intersections, crosswalks, interchanges, ramps, etc.—with disproportionately high crash risk relative to similar sites. An inefficient HSID methodology might result in either identifying a safe site as high risk (false positive) or a high risk site as safe (false negative), and consequently lead to the misuse the available public funds, to poor investment decisions, and to inefficient risk management practice. Current HSID methods suffer from issues like underreporting of minor injury and property damage only (PDO) crashes, challenges of accounting for crash severity into the methodology, and selection of a proper safety performance function to model crash data that is often heavily skewed by a preponderance of zeros. Addressing these challenges, this paper proposes a combination of a PDO equivalency calculation and quantile regression technique to identify hot spots in a transportation network. In particular, issues related to underreporting and crash severity are tackled by incorporating equivalent PDO crashes, whilst the concerns related to the non-count nature of equivalent PDO crashes and the skewness of crash data are addressed by the non-parametric quantile regression technique. The proposed method identifies covariate effects on various quantiles of a population, rather than the population mean like most methods in practice, which more closely corresponds with how black spots are identified in practice. The proposed methodology is illustrated using rural road segment data from Korea and compared against the traditional EB method with negative binomial regression. Application of a quantile regression model on equivalent PDO crashes enables identification of a set of high-risk sites that reflect the true safety costs to the society, simultaneously reduces the influence of under-reported PDO and minor injury crashes, and overcomes the limitation of traditional NB model in dealing with preponderance of zeros problem or right skewed dataset.