131 resultados para Oxy-fuel combustion
em Queensland University of Technology - ePrints Archive
Resumo:
The human health effects following exposure to ultrafine (<100nm) particles (UFPs) produced by fuel combustion, while not completely understood, are generally regarded as detrimental. Road tunnels have emerged as locations where maximum exposure to these particles may occur for the vehicle occupants using them. This study aimed to quantify and investigate the determinants of UFP concentrations in the 4km twin-bore (eastbound and westbound) M5 East tunnel in Sydney, Australia. Sampling was undertaken using a condensation particle counter (CPC) mounted in a vehicle traversing both tunnel bores at various times of day from May through July, 2006. Supplementary measurements were conducted in February, 2008. Over three hundred transects of the tunnel were performed, and these were distributed evenly between the bores. Additional comparative measurements were conducted on a mixed route comprising major roads and shorter tunnels, all within Sydney. Individual trip average UFP concentrations in the M5 East tunnel bores ranged from 5.53 × 104 p cm-3 to 5.95 × 106 p cm-3. Data were sorted by hour of capture, and hourly median trip average (HMA) UFP concentrations ranged from 7.81 × 104 p cm-3 to 1.73 × 106 p cm-3. Hourly median UFP concentrations measured on the mixed route were between 3.71 × 104 p cm-3 and 1.55 × 105 p cm-3. Hourly heavy diesel vehicle (HDV) traffic volume was a very good determinant of UFP concentration in the eastbound tunnel bore (R2 = 0.87), but much less so in the westbound bore (R2 = 0.26). In both bores, the volume of passenger vehicles (i.e. unleaded gasoline-powered vehicles) was a significantly poorer determinant of particle concentration. When compared with similar studies reported previously, the measurements described here were among the highest recorded concentrations, which further highlights the contribution road tunnels may make to the overall UFP exposure of vehicle occupants.
Resumo:
Household air pollution (HAP), arising mainly from the combustion of solid and other polluting fuels, is responsible for a very substantial public health burden, most recently estimated as causing 3.5 million premature deaths in 2010. These patterns of household fuel use have also important negative impacts on safety, prospects for poverty reduction and the environment, including climate change. Building on previous air quality guidelines, the WHO is developing new guidelines focused on household fuel combustion, covering cooking, heating and lighting, and although global, the key focus is low and middle income countries reflecting the distribution of disease burden. As discussed in this paper, currently in development, the guidelines will include reviews of a wide range of evidence including fuel use in homes, emissions from stoves and lighting, household air pollution and exposure levels experienced by populations, health risks, impacts of interventions on HAP and exposure, and also key factors influencing sustainable and equitable adoption of improved stoves and cleaner fuels. GRADE, the standard method used for guidelines evidence review may not be well suited to the variety and nature of evidence required for this project, and a modified approach is being developed and tested. Work on the guidelines is being carried out in close collaboration with the UN Foundation Global Alliance on Clean cookstoves, allowing alignment with specific tools including recently developed international voluntary standards for stoves, and the development of country action plans. Following publication, WHO plans to work closely with a number of countries to learn from implementation efforts, in order to further strengthen support and guidance. A case study on the situation and policy actions to date in Bhutan provide an illustration of the challenges and opportunities involved, and the timely importance of the new guidelines and associated research, evaluation and policy development agendas.
Resumo:
This paper presents a method for investigating ship emissions, the plume capture and analysis system (PCAS), and its application in measuring airborne pollutant emission factors (EFs) and particle size distributions. The current investigation was conducted in situ, aboard two dredgers (Amity: a cutter suction dredger and Brisbane: a hopper suction dredger) but the PCAS is also capable of performing such measurements remotely at a distant point within the plume. EFs were measured relative to the fuel consumption using the fuel combustion derived plume CO2. All plume measurements were corrected by subtracting background concentrations sampled regularly from upwind of the stacks. Each measurement typically took 6 minutes to complete and during one day, 40 to 50 measurements were possible. The relationship between the EFs and plume sample dilution was examined to determine the plume dilution range over which the technique could deliver consistent results when measuring EFs for particle number (PN), NOx, SO2, and PM2.5 within a targeted dilution factor range of 50-1000 suitable for remote sampling. The EFs for NOx, SO2, and PM2.5 were found to be independent of dilution, for dilution factors within that range. The EF measurement for PN was corrected for coagulation losses by applying a time dependant particle loss correction to the particle number concentration data. For the Amity, the EF ranges were PN: 2.2 - 9.6 × 1015 (kg-fuel)-1; NOx: 35-72 g(NO2).(kg-fuel)-1, SO2 0.6 - 1.1 g(SO2).(kg-fuel)-1and PM2.5: 0.7 – 6.1 g(PM2.5).(kg-fuel)-1. For the Brisbane they were PN: 1.0 – 1.5 x 1016 (kg-fuel)-1, NOx: 3.4 – 8.0 g(NO2).(kg-fuel)-1, SO2: 1.3 – 1.7 g(SO2).(kg-fuel)-1 and PM2.5: 1.2 – 5.6 g(PM2.5).(kg-fuel)-1. The results are discussed in terms of the operating conditions of the vessels’ engines. Particle number emission factors as a function of size as well as the count median diameter (CMD), and geometric standard deviation of the size distributions are provided. The size distributions were found to be consistently uni-modal in the range below 500 nm, and this mode was within the accumulation mode range for both vessels. The representative CMDs for the various activities performed by the dredgers ranged from 94-131 nm in the case of the Amity, and 58-80 nm for the Brisbane. A strong inverse relationship between CMD and EF(PN) was observed.
Resumo:
A technique for analysing exhaust emission plumes from unmodified locomotives under real world conditions is described and applied to the task of characterizing plumes from railway trains servicing an Australian shipping port. The method utilizes the simultaneous measurement, downwind of the railway line, of the following pollutants; particle number, PM2.5 mass fraction, SO2, NOx and CO2, with the last of these being used as an indicator of fuel combustion. Emission factors are then derived, in terms of number of particles and mass of pollutant emitted per unit mass of fuel consumed. Particle number size distributions are also presented. The practical advantages of the method are discussed including the capacity to routinely collect emission factor data for passing trains and to thereby build up a comprehensive real world database for a wide range of pollutants. Samples from 56 train movements were collected, analyzed and presented. The quantitative results for emission factors are: EF(N)=(1.7±1)×1016 kg-1, EF(PM2.5)= (1.1±0.5) g·kg-1, EF(NOx)= (28±14) g·kg-1, and EF(SO2 )= (1.4±0.4) g·kg-1. The findings are compared with comparable previously published work. Statistically significant (p<α, α=0.05) correlations within the group of locomotives sampled were found between the emission factors for particle number and both SO2 and NOx.
Resumo:
The study investigated the influence of traffic and land use parameters on metal build-up on urban road surfaces. Mathematical relationships were developed to predict metals originating from fuel combustion and vehicle wear. The analysis undertaken found that nickel and chromium originate from exhaust emissions, lead, copper and zinc from vehicle wear, cadmium from both exhaust and wear and manganese from geogenic sources. Land use does not demonstrate a clear pattern in relation to the metal build-up process, though its inherent characteristics such as traffic activities exert influence. The equation derived for fuel related metal load has high cross-validated coefficient of determination (Q2) and low Standard Error of Cross-Validation (SECV) values indicates that the model is reliable, while the equation derived for wear-related metal load has low Q2 and high SECV values suggesting its use only in preliminary investigations. Relative Prediction Error values for both equations are considered to be well within the error limits for a complex system such as an urban road surface. These equations will be beneficial for developing reliable stormwater treatment strategies in urban areas which specifically focus on mitigation of metal pollution.
Resumo:
This study demonstrates a novel method for testing the hypothesis that variations in primary and secondary particle number concentration (PNC) in urban air are related to residual fuel oil combustion at a coastal port lying 30 km upwind, by examining the correlation between PNC and airborne particle composition signatures chosen for their sensitivity to the elemental contaminants present in residual fuel oil. Residual fuel oil combustion indicators were chosen by comparing the sensitivity of a range of concentration ratios to airborne emissions originating from the port. The most responsive were combinations of vanadium and sulfur concentration ([S], [V]) expressed as ratios with respect to black carbon concentration ([BC]). These correlated significantly with ship activity at the port and with the fraction of time during which the wind blew from the port. The average [V] when the wind was predominantly from the port was 0.52 ng.m-3 (87%) higher than the average for all wind directions and 0.83 ng.m-3 (280%) higher than that for the lowest vanadium yielding wind direction considered to approximate the natural background. Shipping was found to be the main source of V impacting urban air quality in Brisbane. However, contrary to the stated hypothesis, increases in PNC related measures did not correlate with ship emission indicators or ship traffic. Hence at this site ship emissions were not found to be a major contributor to PNC compared to other fossil fuel combustion sources such as road traffic, airport and refinery emissions.
Estimating the burden of disease attributable to urban outdoor air pollution in South Africa in 2000
Resumo:
Objectives To quantify the mortality burden attributed to urban outdoor air pollution in South Africa in 2000. Design The study followed comparative risk assessment (CRA) methodology developed by the World Heath Organization (WHO). In most urban areas, annual mean concentrations of particulate matter (PM) with diameters less than 10 μum (PM10) from monitoring network data and PM with diameters less than 2.5 μm (PM2.5) derived using a ratio method were weighted according to population size. PM10 and PM2.5 data from air-quality assessment studies in areas not covered by the network were also included. Population-attributable fractions calculated using risk coefficients presented in the WHO study were weighted by the proportion of the total population (33%) in urban environments, and applied to revised estimates of deaths and years of life lost (YLLs) for South Africa in 2000. Setting South Africa. Subjects Children under 5 years and adults 30 years and older. Outcome measures Mortality and YLLs from lung cancer and cardiopulmonary disease in adults (30 years and older), and from acute respiratory infections (ARIs) in children aged 0 - 4 years. Results Outdoor air pollution in urban areas in South Africa was estimated to cause 3.7% of the national mortality from cardiopulmonary disease and 5.1% of mortality attributable to cancers of the trachea, bronchus and lung in adults aged 30 years and older, and 1.1% of mortality from ARIs in children under 5 years of age. This amounts to 4 637 or 0.9% (95% uncertainty interval 0.3 - 1.5%) of all deaths and about 42 000 YLLs, or 0.4% (95% uncertainty interval 0.1 - 0.7%) of all YLLs in persons in South Africa in 2000. Conclusion Urban air pollution has under-recognised public health impacts in South Africa. Fossil fuel combustion emissions and traffic-related air pollution remain key targets for public health in South Africa.
Resumo:
This paper reports on the experimental testing of oxygen-enriched porous fuel injection in a scramjet engine. Fuel was injected via inlet mounted, oxide-based ceramic matrix composite (CMC) injectors on both flow path surfaces that covered a total of 9.2 % of the intake surface area. All experiments were performed at an enthalpy of 3.93−4.25±3.2% MJ kg−1, flight Mach number 9.2–9.6 and an equivalence ratio of 0.493±3%. At this condition, the engine was shown to be on the verge of achieving appreciable combustion. Oxygen was then added to the fuel prior to injection such that two distinct enrichment levels were achieved. Combustion was found to increase, by as much as 40 % in terms of combustion-induced pressure rise, over the fuel-only case with increasing oxygen enrichment. Further, the onset of combustion was found to move upstream with increasing levels of oxygen enrichment. Thrust, both uninstalled and specific, and specific impulse were found to be improved with oxygen enrichment. Enhanced fuel–air mixing due to the pre-mixing of oxygen with the fuel together with the porous fuel injection are believed to be the main contributors to the observed enhanced performance of the tested engine.
Resumo:
The one-dimensional propagation of a combustion wave through a premixed solid fuel for two-stage kinetics is studied. We re-examine the analysis of a single reaction travelling-wave and extend it to the case of two-stage reactions. We derive an expression for the travelling wave speed in the limit of large activation energy for both reactions. The analysis shows that when both reactions are exothermic, the wave structure is similar to the single reaction case. However, when the second reaction is endothermic, the wave structure can be significantly different from single reaction case. In particular, as might be expected, a travelling wave does not necessarily exist in this case. We establish conditions in the limiting large activation energy limit for the non-existence, and for monotonicity of the temperature profile in the travelling wave.
Resumo:
Biodiesel is a renewable fuel that has been shown to reduce many exhaust emissions, except oxides of nitrogen (NOx), in diesel engine cars. This is of special concern in inner urban areas that are subject to strict environmental regulations, such as EURO norms. Also, the use of pure biodiesel (B100) is inhibited because of its higher NOx emissions compared to petroleum diesel fuel. The aim of this present work is to investigate the effect of the iodine value and cetane number of various biodiesel fuels obtained from different feed stocks on the combustion and NOx emission characteristics of a direct injection (DI) diesel engine. The biodiesel fuels were chosen from various feed stocks such as coconut, palm kernel, mahua (Madhuca indica), pongamia pinnata, jatropha curcas, rice bran, and sesame seed oils. The experimental results show an approximately linear relationship between iodine value and NOx emissions. The biodiesels obtained from coconut and palm kernel showed lower NOx levels than diesel, but other biodiesels showed an increase in NOx. It was observed that the nature of the fatty acids of the biodiesel fuels had a significant influence on the NOx emissions. Also, the cetane numbers of the biodiesel fuels are affected both premixed combustion and the combustion rate, which further affected the amount of NOx formation. It was concluded that NOx emissions are influenced by many parameters of biodiesel fuels, particularly the iodine value and cetane number.
Resumo:
A statistical modeling method to accurately determine combustion chamber resonance is proposed and demonstrated. This method utilises Markov-chain Monte Carlo (MCMC) through the use of the Metropolis-Hastings (MH) algorithm to yield a probability density function for the combustion chamber frequency and find the best estimate of the resonant frequency, along with uncertainty. The accurate determination of combustion chamber resonance is then used to investigate various engine phenomena, with appropriate uncertainty, for a range of engine cycles. It is shown that, when operating on various ethanol/diesel fuel combinations, a 20% substitution yields the least amount of inter-cycle variability, in relation to combustion chamber resonance.
Resumo:
Particulate pollution has been widely recognised as an important risk factor to human health. In addition to increases in respiratory and cardiovascular morbidity associated with exposure to particulate matter (PM), WHO estimates that urban PM causes 0.8 million premature deaths globally and that 1.5 million people die prematurely from exposure to indoor smoke generated from the combustion of solid fuels. Despite the availability of a huge body of research, the underlying toxicological mechanisms by which particles induce adverse health effects are not yet entirely understood. Oxidative stress caused by generation of free radicals and related reactive oxygen species (ROS) at the sites of deposition has been proposed as a mechanism for many of the adverse health outcomes associated with exposure to PM. In addition to particle-induced generation of ROS in lung tissue cells, several recent studies have shown that particles may also contain ROS. As such, they present a direct cause of oxidative stress and related adverse health effects. Cellular responses to oxidative stress have been widely investigated using various cell exposure assays. However, for a rapid screening of the oxidative potential of PM, less time-consuming and less expensive, cell-free assays are needed. The main aim of this research project was to investigate the application of a novel profluorescent nitroxide probe, synthesised at QUT, as a rapid screening assay in assessing the oxidative potential of PM. Considering that this was the first time that a profluorescent nitroxide probe was applied in investigating the oxidative stress potential of PM, the proof of concept regarding the detection of PM–derived ROS by using such probes needed to be demonstrated and a sampling methodology needed to be developed. Sampling through an impinger containing profluorescent nitroxide solution was chosen as a means of particle collection as it allowed particles to react with the profluorescent nitroxide probe during sampling, avoiding in that way any possible chemical changes resulting from delays between the sampling and the analysis of the PM. Among several profluorescent nitroxide probes available at QUT, bis(phenylethynyl)anthracene-nitroxide (BPEAnit) was found to be the most suitable probe, mainly due to relatively long excitation and emission wavelengths (λex= 430 nm; λem= 485 and 513 nm). These wavelengths are long enough to avoid overlap with the background fluorescence coming from light absorbing compounds which may be present in PM (e.g. polycyclic aromatic hydrocarbons and their derivatives). Given that combustion, in general, is one of the major sources of ambient PM, this project aimed at getting an insight into the oxidative stress potential of combustion-generated PM, namely cigarette smoke, diesel exhaust and wood smoke PM. During the course of this research project, it was demonstrated that the BPEAnit probe based assay is sufficiently sensitive and robust enough to be applied as a rapid screening test for PM-derived ROS detection. Considering that for all three aerosol sources (i.e. cigarette smoke, diesel exhaust and wood smoke) the same assay was applied, the results presented in this thesis allow direct comparison of the oxidative potential measured for all three sources of PM. In summary, it was found that there was a substantial difference between the amounts of ROS per unit of PM mass (ROS concentration) for particles emitted by different combustion sources. For example, particles from cigarette smoke were found to have up to 80 times less ROS per unit of mass than particles produced during logwood combustion. For both diesel and wood combustion it has been demonstrated that the type of fuel significantly affects the oxidative potential of the particles emitted. Similarly, the operating conditions of the combustion source were also found to affect the oxidative potential of particulate emissions. Moreover, this project has demonstrated a strong link between semivolatile (i.e. organic) species and ROS and therefore, clearly highlights the importance of semivolatile species in particle-induced toxicity.
Resumo:
A combustion synthesis of lithium niobate (LN) squares from activated niobium oxide (Nb2 O5.nH2O) and Li2CO3 was studied to understand all the chemical reactions involved, and the nucleation and square-growth mechanisms. It was found that first the lithium ions react with the fuel (urea), then niobium ions of Nb2 O5.nH2O begin a continuous reaction with the fuel to form metal-organic complexes. LN nuclei are formed by the solid-state reaction of Li- and Nb-organic complexes at 430 degrees celcius. Lithium niobate squares are obtained in the crystallization stasge at 700 degrees celcius, which go on the grow into larger squares at 850 degrees celcius because of the agglomeration effect.