143 resultados para Ottimizzazione Stirling radioisotope generator SRG
em Queensland University of Technology - ePrints Archive
Resumo:
Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis.
Resumo:
This paper presents a novel topology to generate high voltage with utilization of slow and fast power switches. New concepts used in this topology include numbers of diode-capacitor units in parallel with resonant circuits which are connected to a positive buck-boost converter. The resonant circuit reverses the voltage polarity of the capacitors. This configuration has capability of generating a flexible high voltage with certain number of capacitors. The advantage of this topology is to use slow switches, less number of diodes and capacitors compare to Marx generator. Simulations have been performed to verify the proposed topology.
Resumo:
The configuration proposed in this paper aims to generate high voltage for pulsed power applications. The main idea is to charge two groups of capacitors in parallel through an inductor and take the advantage of resonant phenomena in charging each capacitor up to a double input voltage level. In each resonant half a cycle, one of those capacitor groups are charged, and finally the charged capacitors will be connected together in series and the summation of the capacitor voltages can be appeared at the output of the topology. This topology can be considered as a modified Marx generator which works based on the resonant concept. Simulation models of this converter have been investigated in Matlab/SIMULINK platform and the attained results fully satisfy the proper operation of the converter.
Resumo:
Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis
Resumo:
The new configuration proposed in this paper for Marx Generator (MG) aims to generate high voltage for pulsed power applications through reduced number of semiconductor components with a more efficient load supplying process. The main idea is to charge two groups of capacitors in parallel through an inductor and take advantage of resonant phenomenon in charging each capacitor up to a double input voltage level. In each resonant half a cycle, one of those capacitor groups are charged, and eventually the charged capacitors will be connected in series and the summation of the capacitor voltages can be appeared at the output of the topology. This topology can be considered as a modified Marx generator which works based on the resonant concept. Simulated models of this converter have been investigated in Matlab/SIMULINK platform and a prototype set up has been implemented in laboratory. The acquired results of either fully satisfy the anticipations in proper operation of the converter.
Resumo:
The new configuration proposed in this paper for Marx Generator (MG.) aims to generate high voltage for pulsed power applications through reduced number of semiconductor components with a more efficient load supplying process. The main idea is to charge two groups of capacitors in parallel through an inductor and take the advantage of resonant phenomenon in charging each capacitor up to a double input voltage level. In each resonant half a cycle, one of those capacitor groups are charged, and eventually the charged capacitors will be connected in series and the summation of the capacitor voltages can be appeared at the output of the topology. This topology can be considered as a modified Marx generator which works based on the resonant concept. Simulated models of this converter have been investigated in Matlab/SIMULINK platform and the acquired results fully satisfy the anticipations in proper operation of the converter.
Resumo:
The Midwestern US is a wind-rich resource and wind power is being developed in this region at a very brisk pace. Transporting this energy resource to load centers invariably requires massive transmission lines. This issue of developing additional transmission to support reliable integration of wind on to the power grid provides a multitude of interesting challenges spanning various areas of power systems such as transmission planning, real-time operations and cost-allocation for new transmission. The Midwest ISO as a regional transmission provider is responsible for processing requests to interconnect proposed generation on to the transmission grid under its purview. This paper provides information about some of the issues faced in performing interconnection planning studies and Midwest ISO's efforts to improve its generator interconnection procedures. Related cost-allocation efforts currently ongoing at the Midwest ISO to streamline integration of bulk quantities of wind power in to the transmission grid are also presented.
Resumo:
Today, a large number of wind generator interconnection requests have been queued and are being processed. The generator interconnection group study is a way to reduce the generator interconnection cycle time and increase interconnection certainty. However, it is very challenging to identify the “best” transmission upgrades for a large group of generator interconnections. It is also very important to differentiate the constraints caused by each generator interconnection request and identify their responsibilities for transmission upgrades. This paper outlines some innovative study approaches that can be used in a group study with large numbers of generator interconnection requests in a constrained area. Improved study methods are introduced, and a summary and conclusions are derived from the study.
Resumo:
This paper presents a novel power control strategy that decouples the active and reactive power for a synchronous generator connected to a power network. The proposed control paradigm considers the capacitance of the transmission line along with its resistance and reactance as-well. Moreover the proposed controller takes into account all cases of R-X relationships, thus allowing it to function in Virtual Power Plant (VPP) structures which operate at both medium voltage (MV) and low voltage (LV) levels. The independent control of active and reactive power is achieved through rotational transformations of the terminal voltages and currents at the synchronous generator's output. This paper details the control technique by first presenting the mathematical and electrical network analysis of the methodology and then successfully implementing the control using MATLAB-SIMULINK simulation.
Resumo:
This paper provides a new general approach for defining coherent generators in power systems based on the coherency in low frequency inter-area modes. The disturbance is considered to be distributed in the network by applying random load changes which is the random walk representation of real loads instead of a single fault and coherent generators are obtained by spectrum analysis of the generators velocity variations. In order to find the coherent areas and their borders in the inter-connected networks, non-generating buses are assigned to each group of coherent generator using similar coherency detection techniques. The method is evaluated on two test systems and coherent generators and areas are obtained for different operating points to provide a more accurate grouping approach which is valid across a range of realistic operating points of the system.
Resumo:
This paper addresses the voltage rise constraints that are initiated from increased renewable generation resources in low voltage distribution networks. In this paper, an approach which is able to mitigate these voltage rise constraints and allow for increased distributed generator penetration is presented. The proposed approach involves utilizing the distribution transformers static tap changer to reduce the distribution feeder voltage setpoint. The proposed approach is modeled on a generic low voltage distribution network using the PSS SINCAL© simulation software package and is also implemented in a real low voltage distribution network to verify its practicality. Results indicate that this approach can be implemented to mitigate the voltage rise constraint and increase small-scale embedded generator penetration in a high proportion of low voltage feeders while avoiding any substantial network costs.
Resumo:
Design of a series-connected photovoltaic generator (SPVG) capable of enhancing power quality is investigated. Analysis of the SPVG operations under disturbance conditions shows explicitly how achievable network voltage quality is affected by the SPVG injected power and its apparent power rating, and that voltage quality can be significantly improved even with a modest level of energy storage capacity incorporated in the SPVG. A control system for the SPVG is also proposed. Both simulation and laboratory tests confirm the efficacy of the distributed generator system.