5 resultados para Orexin-A

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract RATIONALE: Previous studies have shown that orexin-1/hypocretin-1 receptors play a role in self-administration and cue-induced reinstatement of food, drug, and ethanol seeking. In the current study, we examined the role of orexin-1/hypocretin-1 receptors in operant self-administration of ethanol and sucrose and in yohimbine-induced reinstatement of ethanol and sucrose seeking. MATERIALS AND METHODS: Rats were trained to self-administer either 10% ethanol or 5% sucrose (30 min/day). The orexin-1 receptor antagonist SB334867 (0, 5, 10, 15, 20 mg/kg, i.p.) was administered 30 min before the operant self-administration sessions. After these experiments, the operant self-administration behaviors were extinguished in both the ethanol and sucrose-trained rats. Upon reaching extinction criteria, SB334867 (0, 5, 10 mg/kg, i.p.) was administered 30 min before yohimbine (0 or 2 mg/kg, i.p.). In a separate experiment, the effect of SB334867 (0, 15, or 20 mg/kg, i.p.) on general locomotor activity was determined using the open-field test. RESULTS: The orexin-1 receptor antagonist, SB334867 (10, 15 and 20 mg/kg) decreased operant self-administration of 10% ethanol but not 5% sucrose self-administration. Furthermore, SB334867 (5 and 10 mg/kg) significantly decreased yohimbine-induced reinstatement of both ethanol and sucrose seeking. SB334867 did not significantly affect locomotor activity measured using the open-field test. CONCLUSIONS: The results suggest that inhibition of OX-1/Hcrt-1 receptors modulates operant ethanol self-administration and also plays a significant role in yohimbine-induced reinstatement of both ethanol and sucrose seeking in rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have implicated the hypocretin/orexinergic system in reward-seeking behavior. Almorexant, a dual orexin/hypocretin R1 and R2 receptor antagonist, has proven effective in preclinical studies in promoting sleep in animal models and was in Phase III clinical trials for sleep disorders. The present study combines behavioral assays with in vitro biochemical and electrophysiological techniques to elucidate the role of almorexant in ethanol and sucrose intake. Using an operant self-administration paradigm, we demonstrate that systemic administration of almorexant decreased operant selfadministration of both 20% ethanol and 5% sucrose. We further demonstrate that intraventral tegmental area (VTA) infusions, but not intra substantia nigra infusions, of almorexant reduced ethanol self-administration. Extracellular recordings performed in VTA neurons revealed that orexin-A increased firing and this enhancement of firing was blocked by almorexant. The results demonstrate that orexin/hypocretin receptors in distinct brain regions regulate ethanol and sucrose mediated behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addiction is a devastating disorder that affects 15.3 million people worldwide. While prevalent, few effective treatments exist. Orexin receptors have been proposed as a potential target for anti-craving medications. Orexins, also known as hypocretins, are neuropeptides produced in neurons of the lateral and dorsomedial hypothalamus and perifornical area, which project widely throughout the brain. The absence of orexins in rodents and humans leads to narcolepsy. However, orexins also have an established role in reward seeking. This review will discuss some of the original studies describing the roles of the orexins in reward seeking as well as specific works that were presented at the 2013 International Narcotics Research Conference. Orexin signalling can promote drug-induced plasticity of glutamatergic synapses onto dopamine neurons of the ventral tegmental area (VTA), a brain region implicated in motivated behaviour. Additional evidence suggests that orexin signalling can also promote drug seeking by initiating an endocannabinoid-mediated synaptic depression of GABAergic inputs to the VTA, and thereby disinhibiting dopaminergic neurons. Orexin neurons co-express the inhibitory opioid peptide dynorphin. It has been proposed that orexin in the VTA may not mediate reward per se, but rather occludes the ‘anti-reward’ effects of dynorphin. Finally, orexin signalling in the prefrontal cortex and the central amygdala is implicated in reinstatement of reward seeking. This review will highlight recent work describing the role of orexin signalling in cellular processes underlying addiction-related behaviours and propose novel hypotheses for the mechanisms by which orexin signalling may impart drug seeking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is emerging evidence that individuals have the capacity to learn to be resilient by developing protective mechanisms that prevent them from the maladaptive effects of stress that can contribute to addiction.The emerging field of the neuroscience of resilience is beginning to uncover the circuits and molecules that protect against stress-related neuropsychiatric diseases, such as addiction. Glucocorticoids (GCs) are important regulators of basal and stress-related homeostasis in all higher organisms and influence a wide array of genes in almost every organ and tissue. GCs, therefore, are ideally situated to either promote or prevent adaptation to stress. In this review, we will focus on the role of GCs in the hypothalamic-pituitary adrenocortical axis and extra-hypothalamic regions in regulating basal and chronic stress responses. GCs interact with a large number of neurotransmitter and neuropeptide systems that are associated with the development of addiction. Additionally, the review will focus on the orexinergic and cholinergic pathways and highlight their role in stress and addiction. GCs play a key role in promoting the development of resilience or susceptibility and represent important pharmacotherapeutic targets that can reduce the impact of a maladapted stress system for the treatment of stress-induced addiction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alcohol accounts for major disability worldwide and available treatments are insufficient. A massive growth in the area of addiction neuroscience over the last several decades has not resulted in a corresponding expansion of treatment options available to patients. In this chapter, we describe our experience with building translational research programs aimed at developing novel pharmacotherapies for alcoholism. The narrative is based on experience and considerations made in the course of building these programs, and work on four mechanisms targeted by our libraries: cholinergic nicotine receptors, receptors for corticotropin-releasing hormone (CRH), neurokinin 1 (NK1) receptors for substance P (SP) and hypocretin/orexin receptors. Around this experience, we discuss issues we believe to be critical for successful translation of basic addiction neuroscience into treatments, and complementarities between academic and other actors that in our assessment need to be harnessed in order to bring treatments to the clinic.