493 resultados para Optimal monitoring
em Queensland University of Technology - ePrints Archive
Resumo:
Manuscript Type: Empirical Research Issue: We propose that high levels of monitoring are not always in the best interests of minority shareholders. In family-owned companies the optimal level of board monitoring required by minority shareholders is expected to be lower than that of other companies. This is because the relative benefits and costs of monitoring are different in family-owned companies. Research Findings: At moderate levels of board monitoring, we find concave relationships between board monitoring variables and firm performance for family-owned companies but not for other companies. The optimal level of board monitoring for our sample of Asian family-owned companies equates to board independence of 38%, separation of the Chairman and CEO positions and establishment of audit and remuneration committees. Additional testing shows that the optimal level of board monitoring is sensitive to the magnitude of the agency conflict between the family group and minority shareholders and the presence of substitute monitoring. Practitioner/Policy Implications: For policymakers, the results show that more monitoring is not always in the best interests of minority shareholders. Therefore, it may be inappropriate for regulators to advise all companies to follow the same set of corporate governance guidelines. However, our results also indicate that the board governance practices of family-owned companies are still well below the identified optimal levels. Keywords: Corporate Governance, Board Independence, Board of Directors, Family Firms, Monitoring.
Resumo:
Food and non-alcoholic beverage marketing is recognized as an important factor influencing food choices related to non-communicable diseases. The monitoring of populations' exposure to food and non-alcoholic beverage promotions, and the content of these promotions, is necessary to generate evidence to understand the extent of the problem, and to determine appropriate and effective policy responses. A review of studies measuring the nature and extent of exposure to food promotions was conducted to identify approaches to monitoring food promotions via dominant media platforms. A step-wise approach, comprising ‘minimal’, ‘expanded’ and ‘optimal’ monitoring activities, was designed. This approach can be used to assess the frequency and level of exposure of population groups (especially children) to food promotions, the persuasive power of techniques used in promotional communications (power of promotions) and the nutritional composition of promoted food products. Detailed procedures for data sampling, data collection and data analysis for a range of media types are presented, as well as quantifiable measurement indicators for assessing exposure to and power of food and non-alcoholic beverage promotions. The proposed framework supports the development of a consistent system for monitoring food and non-alcoholic beverage promotions for comparison between countries and over time.
Resumo:
The quality of environmental decisions are gauged according to the management objectives of a conservation project. Management objectives are generally about maximising some quantifiable measure of system benefit, for instance population growth rate. They can also be defined in terms of learning about the system in question, in such a case actions would be chosen that maximise knowledge gain, for instance in experimental management sites. Learning about a system can also take place when managing practically. The adaptive management framework (Walters 1986) formally acknowledges this fact by evaluating learning in terms of how it will improve management of the system and therefore future system benefit. This is taken into account when ranking actions using stochastic dynamic programming (SDP). However, the benefits of any management action lie on a spectrum from pure system benefit, when there is nothing to be learned about the system, to pure knowledge gain. The current adaptive management framework does not permit management objectives to evaluate actions over the full range of this spectrum. By evaluating knowledge gain in units distinct to future system benefit this whole spectrum of management objectives can be unlocked. This paper outlines six decision making policies that differ across the spectrum of pure system benefit through to pure learning. The extensions to adaptive management presented allow specification of the relative importance of learning compared to system benefit in management objectives. Such an extension means practitioners can be more specific in the construction of conservation project objectives and be able to create policies for experimental management sites in the same framework as practical management sites.
Resumo:
Operational modal analysis (OMA) is prevalent in modal identifi cation of civil structures. It asks for response measurements of the underlying structure under ambient loads. A valid OMA method requires the excitation be white noise in time and space. Although there are numerous applications of OMA in the literature, few have investigated the statistical distribution of a measurement and the infl uence of such randomness to modal identifi cation. This research has attempted modifi ed kurtosis to evaluate the statistical distribution of raw measurement data. In addition, a windowing strategy employing this index has been proposed to select quality datasets. In order to demonstrate how the data selection strategy works, the ambient vibration measurements of a laboratory bridge model and a real cable-stayed bridge have been respectively considered. The analysis incorporated with frequency domain decomposition (FDD) as the target OMA approach for modal identifi cation. The modal identifi cation results using the data segments with different randomness have been compared. The discrepancy in FDD spectra of the results indicates that, in order to fulfi l the assumption of an OMA method, special care shall be taken in processing a long vibration measurement data. The proposed data selection strategy is easy-to-apply and verifi ed effective in modal analysis.
Resumo:
Animal models of critical illness are vital in biomedical research. They provide possibilities for the investigation of pathophysiological processes that may not otherwise be possible in humans. In order to be clinically applicable, the model should simulate the critical care situation realistically, including anaesthesia, monitoring, sampling, utilising appropriate personnel skill mix, and therapeutic interventions. There are limited data documenting the constitution of ideal technologically advanced large animal critical care practices and all the processes of the animal model. In this paper, we describe the procedure of animal preparation, anaesthesia induction and maintenance, physiologic monitoring, data capture, point-of-care technology, and animal aftercare that has been successfully used to study several novel ovine models of critical illness. The relevant investigations are on respiratory failure due to smoke inhalation, transfusion related acute lung injury, endotoxin-induced proteogenomic alterations, haemorrhagic shock, septic shock, brain death, cerebral microcirculation, and artificial heart studies. We have demonstrated the functionality of monitoring practices during anaesthesia required to provide a platform for undertaking systematic investigations in complex ovine models of critical illness.
Resumo:
This paper presents advanced optimization techniques for Mission Path Planning (MPP) of a UAS fitted with a spore trap to detect and monitor spores and plant pathogens. The UAV MPP aims to optimise the mission path planning search and monitoring of spores and plant pathogens that may allow the agricultural sector to be more competitive and more reliable. The UAV will be fitted with an air sampling or spore trap to detect and monitor spores and plant pathogens in remote areas not accessible to current stationary monitor methods. The optimal paths are computed using a Multi-Objective Evolutionary Algorithms (MOEAs). Two types of multi-objective optimisers are compared; the MOEA Non-dominated Sorting Genetic Algorithms II (NSGA-II) and Hybrid Game are implemented to produce a set of optimal collision-free trajectories in three-dimensional environment. The trajectories on a three-dimension terrain, which are generated off-line, are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different position with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of coupling a Hybrid-Game strategy to a MOEA for MPP tasks. The reduction of numerical cost is an important point as the faster the algorithm converges the better the algorithms is for an off-line design and for future on-line decisions of the UAV.
Resumo:
Autonomous Underwater Vehicles (AUVs) are revolutionizing oceanography through their versatility, autonomy and endurance. However, they are still an underutilized technology. For coastal operations, the ability to track a certain feature is of interest to ocean scientists. Adaptive and predictive path planning requires frequent communication with significant data transfer. Currently, most AUVs rely on satellite phones as their primary communication. This communication protocol is expensive and slow. To reduce communication costs and provide adequate data transfer rates, we present a hardware modification along with a software system that provides an alternative robust disruption- tolerant communications framework enabling cost-effective glider operation in coastal regions. The framework is specifically designed to address multi-sensor deployments. We provide a system overview and present testing and coverage data for the network. Additionally, we include an application of ocean-model driven trajectory design, which can benefit from the use of this network and communication system. Simulation and implementation results are presented for single and multiple vehicle deployments. The presented combination of infrastructure, software development and deployment experience brings us closer to the goal of providing a reliable and cost-effective data transfer framework to enable real-time, optimal trajectory design, based on ocean model predictions, to gather in situ measurements of interesting and evolving ocean features and phenomena.
Resumo:
Ocean gliders constitute an important advance in the highly demanding ocean monitoring scenario. Their effciency, endurance and increasing robustness make these vehicles an ideal observing platform for many long term oceanographic applications. However, they have proved to be also useful in the opportunis-tic short term characterization of dynamic structures. Among these, mesoscale eddies are of particular interest due to the relevance they have in many oceano-graphic processes.
Resumo:
Food prices and food affordability are important determinants of food choices, obesity and non-communicable diseases. As governments around the world consider policies to promote the consumption of healthier foods, data on the relative price and affordability of foods, with a particular focus on the difference between ‘less healthy’ and ‘healthy’ foods and diets, are urgently needed. This paper briefly reviews past and current approaches to monitoring food prices, and identifies key issues affecting the development of practical tools and methods for food price data collection, analysis and reporting. A step-wise monitoring framework, including measurement indicators, is proposed. ‘Minimal’ data collection will assess the differential price of ‘healthy’ and ‘less healthy’ foods; ‘expanded’ monitoring will assess the differential price of ‘healthy’ and ‘less healthy’ diets; and the ‘optimal’ approach will also monitor food affordability, by taking into account household income. The monitoring of the price and affordability of ‘healthy’ and ‘less healthy’ foods and diets globally will provide robust data and benchmarks to inform economic and fiscal policy responses. Given the range of methodological, cultural and logistical challenges in this area, it is imperative that all aspects of the proposed monitoring framework are tested rigorously before implementation.
Resumo:
Non-communicable diseases (NCDs) dominate disease burdens globally and poor nutrition increasingly contributes to this global burden. Comprehensive monitoring of food environments, and evaluation of the impact of public and private sector policies on food environments is needed to strengthen accountability systems to reduce NCDs. The International Network for Food and Obesity/NCDs Research, Monitoring and Action Support (INFORMAS) is a global network of public-interest organizations and researchers that aims to monitor, benchmark and support public and private sector actions to create healthy food environments and reduce obesity, NCDs and their related inequalities. The INFORMAS framework includes two ‘process’ modules, that monitor the policies and actions of the public and private sectors, seven ‘impact’ modules that monitor the key characteristics of food environments and three ‘outcome’ modules that monitor dietary quality, risk factors and NCD morbidity and mortality. Monitoring frameworks and indicators have been developed for 10 modules to provide consistency, but allowing for stepwise approaches (‘minimal’, ‘expanded’, ‘optimal’) to data collection and analysis. INFORMAS data will enable benchmarking of food environments between countries, and monitoring of progress over time within countries. Through monitoring and benchmarking, INFORMAS will strengthen the accountability systems needed to help reduce the burden of obesity, NCDs and their related inequalities.
Resumo:
This paper outlines a step-wise framework for monitoring foods and beverages provided or sold in publicly funded institutions. The focus is on foods in schools, but the framework can also be applied to foods provided or sold in other publicly funded institutions. Data collection and evaluation within this monitoring framework will consist of two components. In component I, information on existing food or nutrition policies and/or programmes within settings would be compiled. Currently, nutrition standards and voluntary guidelines associated with such policies/programmes vary widely globally. This paper, which provides a comprehensive review of such standards and guidelines, will facilitate institutional learnings for those jurisdictions that have not yet established them or are undergoing review of existing ones. In component II, the quality of foods provided or sold in public sector settings is evaluated relative to existing national or sub-national nutrition standards or voluntary guidelines. Where there are no (or only poor) standards or guidelines available, the nutritional quality of foods can be evaluated relative to standards of a similar jurisdiction or other appropriate standards. Measurement indicators are proposed (within ‘minimal’, ‘expanded’ and ‘optimal’ approaches) that can be used to monitor progress over time in meeting policy objectives, and facilitate comparisons between countries.