218 resultados para Optical variables measurement

em Queensland University of Technology - ePrints Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a design and fabrication method to enable simpler manufacturing of more efficient organic solar cell modules using a modified flat panel deposition technique. Many mini-cell pixels are individually connected to each other in parallel forming a macro-scale solar cell array. The pixel size of each array is optimized through experimentation to maximize the efficiency of the whole array. We demonstrate that integrated organic solar cell modules with a scalable current output can be fabricated in this fashion and can also be connected in series to generate a scalable voltage output.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By using electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed hysteresis behavior of capacitance-voltage (C-V) characteristics of IZO/polyterpenol (PT)/C₆₀/pentacene/Au diodes, where PT layer is actively working as a hole-transport electron-blocking layer. The EFISHG measurement verified the presence of interface accumulated charges in the diodes, and showed that a space charge electric field from accumulated excess electrons (holes) that remain at the PT/C₆₀ (C₆₀/pentacene) interface is responsible for the hysteresis loop observed in the C-V characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity in paediatrics, prevalent in approximately 2-4% of the general population. While it is a complex three-dimensional deformity, it is clinically characterised by an abnormal lateral curvature of the spine. The treatment for severe deformity is surgical correction with the use of structural implants. Anterior single rod correction employs a solid rod connected to the anterior spine via vertebral body screws. Correction is achieved by applying compression between adjacent vertebral body screws, before locking each screw onto the rod. Biomechanical complication rates have been reported as high as 20.8%, and include rod breakage, screw pull-out and loss of correction. Currently, the corrective forces applied to the spine are unknown. These forces are important variables to consider in understanding the biomechanics of scoliosis correction. The purpose of this study was to measure these forces intra-operatively during anterior single rod AIS correction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a method has been developed for estimating pitch angle, roll angle and aircraft body rates based on horizon detection and temporal tracking using a forward-looking camera, without assistance from other sensors. Using an image processing front-end, we select several lines in an image that may or may not correspond to the true horizon. The optical flow at each candidate line is calculated, which may be used to measure the body rates of the aircraft. Using an Extended Kalman Filter (EKF), the aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and the location of the horizon. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To test the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42◦ and 0.71◦ respectively when compared with a truth attitude source. The Cessna flight resulted in pitch and roll error standard deviations of 1.79◦ and 1.75◦ respectively. The benefits of selecting and tracking the horizon using a motion model and optical flow rather than naively relying on the image processing front-end is also demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2008, a three-year pilot ‘pay for performance’ (P4P) program, known as ‘Clinical Practice Improvement Payment’ (CPIP) was introduced into Queensland Health (QHealth). QHealth is a large public health sector provider of acute, community, and public health services in Queensland, Australia. The organisation has recently embarked on a significant reform agenda including a review of existing funding arrangements (Duckett et al., 2008). Partly in response to this reform agenda, a casemix funding model has been implemented to reconnect health care funding with outcomes. CPIP was conceptualised as a performance-based scheme that rewarded quality with financial incentives. This is the first time such a scheme has been implemented into the public health sector in Australia with a focus on rewarding quality, and it is unique in that it has a large state-wide focus and includes 15 Districts. CPIP initially targeted five acute and community clinical areas including Mental Health, Discharge Medication, Emergency Department, Chronic Obstructive Pulmonary Disease, and Stroke. The CPIP scheme was designed around key concepts including the identification of clinical indicators that met the set criteria of: high disease burden, a well defined single diagnostic group or intervention, significant variations in clinical outcomes and/or practices, a good evidence, and clinician control and support (Ward, Daniels, Walker & Duckett, 2007). This evaluative research targeted Phase One of implementation of the CPIP scheme from January 2008 to March 2009. A formative evaluation utilising a mixed methodology and complementarity analysis was undertaken. The research involved three research questions and aimed to determine the knowledge, understanding, and attitudes of clinicians; identify improvements to the design, administration, and monitoring of CPIP; and determine the financial and economic costs of the scheme. Three key studies were undertaken to ascertain responses to the key research questions. Firstly, a survey of clinicians was undertaken to examine levels of knowledge and understanding and their attitudes to the scheme. Secondly, the study sought to apply Statistical Process Control (SPC) to the process indicators to assess if this enhanced the scheme and a third study examined a simple economic cost analysis. The CPIP Survey of clinicians elicited 192 clinician respondents. Over 70% of these respondents were supportive of the continuation of the CPIP scheme. This finding was also supported by the results of a quantitative altitude survey that identified positive attitudes in 6 of the 7 domains-including impact, awareness and understanding and clinical relevance, all being scored positive across the combined respondent group. SPC as a trending tool may play an important role in the early identification of indicator weakness for the CPIP scheme. This evaluative research study supports a previously identified need in the literature for a phased introduction of Pay for Performance (P4P) type programs. It further highlights the value of undertaking a formal risk assessment of clinician, management, and systemic levels of literacy and competency with measurement and monitoring of quality prior to a phased implementation. This phasing can then be guided by a P4P Design Variable Matrix which provides a selection of program design options such as indicator target and payment mechanisms. It became evident that a clear process is required to standardise how clinical indicators evolve over time and direct movement towards more rigorous ‘pay for performance’ targets and the development of an optimal funding model. Use of this matrix will enable the scheme to mature and build the literacy and competency of clinicians and the organisation as implementation progresses. Furthermore, the research identified that CPIP created a spotlight on clinical indicators and incentive payments of over five million from a potential ten million was secured across the five clinical areas in the first 15 months of the scheme. This indicates that quality was rewarded in the new QHealth funding model, and despite issues being identified with the payment mechanism, funding was distributed. The economic model used identified a relative low cost of reporting (under $8,000) as opposed to funds secured of over $300,000 for mental health as an example. Movement to a full cost effectiveness study of CPIP is supported. Overall the introduction of the CPIP scheme into QHealth has been a positive and effective strategy for engaging clinicians in quality and has been the catalyst for the identification and monitoring of valuable clinical process indicators. This research has highlighted that clinicians are supportive of the scheme in general; however, there are some significant risks that include the functioning of the CPIP payment mechanism. Given clinician support for the use of a pay–for-performance methodology in QHealth, the CPIP scheme has the potential to be a powerful addition to a multi-faceted suite of quality improvement initiatives within QHealth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are large uncertainties in the aerothermodynamic modelling of super-orbital re-entry which impact the design of spacecraft thermal protection systems (TPS). Aspects of the thermal environment of super-orbital re-entry flows can be simulated in the laboratory using arc- and plasma jet facilities and these devices are regularly used for TPS certification work [5]. Another laboratory device which is capable of simulating certain critical features of both the aero and thermal environment of super-orbital re-entry is the expansion tube, and three such facilities have been operating at the University of Queensland in recent years[10]. Despite some success, wind tunnel tests do not achieve full simulation, however, a virtually complete physical simulation of particular re-entry conditions can be obtained from dedicated flight testing, and the Apollo era FIRE II flight experiment [2] is the premier example which still forms an important benchmark for modern simulations. Dedicated super-orbital flight testing is generally considered too expensive today, and there is a reluctance to incorporate substantial instrumentation for aerothermal diagnostics into existing missions since it may compromise primary mission objectives. An alternative approach to on-board flight measurements, with demonstrated success particularly in the ‘Stardust’ sample return mission, is remote observation of spectral emissions from the capsule and shock layer [8]. JAXA’s ‘Hayabusa’ sample return capsule provides a recent super-orbital reentry example through which we illustrate contributions in three areas: (1) physical simulation of super-orbital re-entry conditions in the laboratory; (2) computational simulation of such flows; and (3) remote acquisition of optical emissions from a super-orbital re entry event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a plasmonic “ac Wheatstone bridge” circuit is proposed and theoretically modeled for the first time. The bridge circuit consists of three metallic nanoparticles, shaped as rectangular prisms, with two nanoparticles acting as parallel arms of a resonant circuit and the third bridging nanoparticle acting as an optical antenna providing an output signal. Polarized light excites localized surface plasmon resonances in the two arms of the circuit, which generate an optical signal dependent on the phase-sensitive excitations of surface plasmons in the antenna. The circuit is analyzed using a plasmonic coupling theory and numerical simulations. The analyses show that the plasmonic circuit is sensitive to phase shifts between the arms of the bridge and has the potential to detect the presence of single molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing global competitiveness worldwide has forced manufacturing organizations to produce high-quality products more quickly and at a competitive cost. In order to reach these goals, they need good quality components from suppliers at optimum price and lead time. This actually forced all the companies to adapt different improvement practices such as lean manufacturing, Just in Time (JIT) and effective supply chain management. Applying new improvement techniques and tools cause higher establishment costs and more Information Delay (ID). On the contrary, these new techniques may reduce the risk of stock outs and affect supply chain flexibility to give a better overall performance. But industry people are unable to measure the overall affects of those improvement techniques with a standard evaluation model .So an effective overall supply chain performance evaluation model is essential for suppliers as well as manufacturers to assess their companies under different supply chain strategies. However, literature on lean supply chain performance evaluation is comparatively limited. Moreover, most of the models assumed random values for performance variables. The purpose of this paper is to propose an effective supply chain performance evaluation model using triangular linguistic fuzzy numbers and to recommend optimum ranges for performance variables for lean implementation. The model initially considers all the supply chain performance criteria (input, output and flexibility), converts the values to triangular linguistic fuzzy numbers and evaluates overall supply chain performance under different situations. Results show that with the proposed performance measurement model, improvement area for each variable can be accurately identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Vertebral rotation found in structural scoliosis contributes to trunkal asymmetry which is commonly measured with a simple Scoliometer device on a patient's thorax in the forward flexed position. The new generation of mobile 'smartphones' have an integrated accelerometer, making accurate angle measurement possible, which provides a potentially useful clinical tool for assessing rib hump deformity. This study aimed to compare rib hump angle measurements performed using a Smartphone and traditional Scoliometer on a set of plaster torsos representing the range of torsional deformities seen in clinical practice. Methods. Nine observers measured the rib hump found on eight plaster torsos moulded from scoliosis patients with both a Scoliometer and an Apple iPhone on separate occasions. Each observer repeated the measurements at least a week after the original measurements, and were blinded to previous results. Intra-observer reliability and inter-observer reliability were analysed using the method of Bland and Altman and 95% confidence intervals were calculated. The Intra-Class Correlation Coefficients (ICC) were calculated for repeated measurements of each of the eight plaster torso moulds by the nine observers. Results. Mean absolute difference between pairs of iPhone/Scoliometer measurements was 2.1 degrees, with a small (1 degrees) bias toward higher rib hump angles with the iPhone. 95% confidence intervals for intra-observer variability were +/- 1.8 degrees (Scoliometer) and +/- 3.2 degrees (iPhone). 95% confidence intervals for inter-observer variability were +/- 4.9 degrees (iPhone) and +/- 3.8 degrees (Scoliometer). The measurement errors and confidence intervals found were similar to or better than the range of previously published thoracic rib hump measurement studies. Conclusions. The iPhone is a clinically equivalent rib hump measurement tool to the Scoliometer in spinal deformity patients. The novel use of plaster torsos as rib hump models avoids the variables of patient fatigue and discomfort, inconsistent positioning and deformity progression using human subjects in a single or multiple measurement sessions.