892 resultados para Ontology Approach
em Queensland University of Technology - ePrints Archive
Resumo:
Discovering proper search intents is a vi- tal process to return desired results. It is constantly a hot research topic regarding information retrieval in recent years. Existing methods are mainly limited by utilizing context-based mining, query expansion, and user profiling techniques, which are still suffering from the issue of ambiguity in search queries. In this pa- per, we introduce a novel ontology-based approach in terms of a world knowledge base in order to construct personalized ontologies for identifying adequate con- cept levels for matching user search intents. An iter- ative mining algorithm is designed for evaluating po- tential intents level by level until meeting the best re- sult. The propose-to-attempt approach is evaluated in a large volume RCV1 data set, and experimental results indicate a distinct improvement on top precision after compared with baseline models.
Resumo:
More and more traditional manufacturing companies form or join inter-organizational networks to bundle their physical products with related services to offer superior value propositions to their customers. Some of these product-related services can be digitized completely and thus fully delivered electronically. Other services require the physical integration of external factors, but can still be coordinated electronically. In both cases companies and consumers face the problem of discovering appropriate product-related service offerings in the network or market. Based on ideas from the web service discovery discipline we propose a meet-in-the-middle approach between heavy-weight semantic technologies and simple boolean search to address this issue. Our approach is able to consider semantic relations in service descriptions and queries and thus delivers better results than syntax-based search. However – unlike most semantic approaches – it does not require the use of any formal language for semantic markup and thus requires less resources and skills for both service providers and consumers. To fully realize the potentials of the proposed approach a domain ontology is needed. In this research-in-progress paper we construct such an ontology for the domain of product-service bundles through analysis and synthesis of related work on service description. This will serve as an anchor for future research to iteratively improve and evaluate the ontology through collaborative design efforts and practical application.
Resumo:
Historically, asset management focused primarily on the reliability and maintainability of assets; organisations have since then accepted the notion that a much larger array of processes govern the life and use of an asset. With this, asset management’s new paradigm seeks a holistic, multi-disciplinary approach to the management of physical assets. A growing number of organisations now seek to develop integrated asset management frameworks and bodies of knowledge. This research seeks to complement existing outputs of the mentioned organisations through the development of an asset management ontology. Ontologies define a common vocabulary for both researchers and practitioners who need to share information in a chosen domain. A by-product of ontology development is the realisation of a process architecture, of which there is also no evidence in published literature. To develop the ontology and subsequent asset management process architecture, a standard knowledge-engineering methodology is followed. This involves text analysis, definition and classification of terms and visualisation through an appropriate tool (in this case, the Protégé application was used). The result of this research is the first attempt at developing an asset management ontology and process architecture.
Resumo:
Image annotation is a significant step towards semantic based image retrieval. Ontology is a popular approach for semantic representation and has been intensively studied for multimedia analysis. However, relations among concepts are seldom used to extract higher-level semantics. Moreover, the ontology inference is often crisp. This paper aims to enable sophisticated semantic querying of images, and thus contributes to 1) an ontology framework to contain both visual and contextual knowledge, and 2) a probabilistic inference approach to reason the high-level concepts based on different sources of information. The experiment on a natural scene database from LabelMe database shows encouraging results.
Resumo:
Automated analysis of the sentiments presented in online consumer feedbacks can facilitate both organizations’ business strategy development and individual consumers’ comparison shopping. Nevertheless, existing opinion mining methods either adopt a context-free sentiment classification approach or rely on a large number of manually annotated training examples to perform context sensitive sentiment classification. Guided by the design science research methodology, we illustrate the design, development, and evaluation of a novel fuzzy domain ontology based contextsensitive opinion mining system. Our novel ontology extraction mechanism underpinned by a variant of Kullback-Leibler divergence can automatically acquire contextual sentiment knowledge across various product domains to improve the sentiment analysis processes. Evaluated based on a benchmark dataset and real consumer reviews collected from Amazon.com, our system shows remarkable performance improvement over the context-free baseline.
Resumo:
Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging and represent those in a form of ontology, but the application of the learned ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.
Resumo:
Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging into some form of ontology, but the application of the resulted ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.
Resumo:
With the emergence of Web 2.0, Web users can classify Web items of their interest by using tags. Tags reflect users’ understanding to the items collected in each tag. Exploring user tagging behavior provides a promising way to understand users’ information needs. However, free and relatively uncontrolled vocabulary has its drawback in terms of lack of standardization and semantic ambiguity. Moreover, the relationships among tags have not been explored even there exist rich relationships among tags which could provide valuable information for us to better understand users. In this paper, we propose a novel approach to construct tag ontology based on the widely used general ontology WordNet to capture the semantics and the structural relationships of tags. Ambiguity of tags is a challenging problem to deal with in order to construct high quality tag ontology. We propose strategies to find the semantic meanings of tags and a strategy to disambiguate the semantics of tags based on the opinion of WordNet lexicographers. In order to evaluate the usefulness of the constructed tag ontology, in this paper we apply the extracted tag ontology in a tag recommendation experiment. We believe this is the first application of tag ontology for recommendation making. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.
Resumo:
Nowadays, everyone can effortlessly access a range of information on the World Wide Web (WWW). As information resources on the web continue to grow tremendously, it becomes progressively more difficult to meet high expectations of users and find relevant information. Although existing search engine technologies can find valuable information, however, they suffer from the problems of information overload and information mismatch. This paper presents a hybrid Web Information Retrieval approach allowing personalised search using ontology, user profile and collaborative filtering. This approach finds the context of user query with least user’s involvement, using ontology. Simultaneously, this approach uses time-based automatic user profile updating with user’s changing behaviour. Subsequently, this approach uses recommendations from similar users using collaborative filtering technique. The proposed method is evaluated with the FIRE 2010 dataset and manually generated dataset. Empirical analysis reveals that Precision, Recall and F-Score of most of the queries for many users are improved with proposed method.
Resumo:
Foreword: In this paper I call upon a praxiological approach. Praxeology (early alteration of praxiology) is the study of human action and conduct. The name praxeology/praxiologyakes is root in praxis, Medieval Latin, from Greek, doing, action, from prassein to do, practice (Merriam-Webster Dictionary). Having been involved in project management education, research and practice for the last twenty years, I have constantly tried to improve and to provide a better understanding/knowledge of the field and related practice, and as a consequence widen and deepen the competencies of the people I was working with (and my own competencies as well!), assuming that better project management lead to more efficient and effective use of resources, development of people and at the end to a better world. For some time I have perceived a need to clarify the foundations of the discipline of project management, or at least elucidate what these foundations could be. An immodest task, one might say! But not a neutral one! I am constantly surprised by the way the world (i.e., organizations, universities, students and professional bodies) sees project management: as a set of methods, techniques, tools, interacting with others fields – general management, engineering, construction, information systems, etc. – bringing some effective ways of dealing with various sets of problems – from launching a new satellite to product development through to organizational change.
Resumo:
The development of text classification techniques has been largely promoted in the past decade due to the increasing availability and widespread use of digital documents. Usually, the performance of text classification relies on the quality of categories and the accuracy of classifiers learned from samples. When training samples are unavailable or categories are unqualified, text classification performance would be degraded. In this paper, we propose an unsupervised multi-label text classification method to classify documents using a large set of categories stored in a world ontology. The approach has been promisingly evaluated by compared with typical text classification methods, using a real-world document collection and based on the ground truth encoded by human experts.
Resumo:
Background This paper presents a novel approach to searching electronic medical records that is based on concept matching rather than keyword matching. Aim The concept-based approach is intended to overcome specific challenges we identified in searching medical records. Method Queries and documents were transformed from their term-based originals into medical concepts as defined by the SNOMED-CT ontology. Results Evaluation on a real-world collection of medical records showed our concept-based approach outperformed a keyword baseline by 25% in Mean Average Precision. Conclusion The concept-based approach provides a framework for further development of inference based search systems for dealing with medical data.
Resumo:
The Australian e-Health Research Centre and Queensland University of Technology recently participated in the TREC 2011 Medical Records Track. This paper reports on our methods, results and experience using a concept-based information retrieval approach. Our concept-based approach is intended to overcome specific challenges we identify in searching medical records. Queries and documents are transformed from their term-based originals into medical concepts as de ned by the SNOMED-CT ontology. Results show our concept-based approach performed above the median in all three performance metrics: bref (+12%), R-prec (+18%) and Prec@10 (+6%).