152 resultados para Oldroyd 8-constant model
em Queensland University of Technology - ePrints Archive
Resumo:
The aim of this study was to validate the Children’s Eating Behaviour Questionnaire (CEBQ) in three ethnically and culturally diverse samples of mothers in Australia. Confirmatory factor analysis utilising structural equation modelling examined whether the established 8-factor model of the CEBQ was supported in our three populations: (i) a community sample of first-time mothers allocated to the control group of the NOURISH trial (mean child age = 24 months [SD = 1]; N = 244); (ii) a sample of immigrant Indian mothers of children aged 1–5 years (mean age = 34 months [SD = 14]; N = 203), and (iii) a sample of immigrant Chinese mothers of children aged 1–4 years (mean age = 36 months [SD = 14]; N = 216). The original 8-factor model provided an acceptable fit to the data in the NOURISH sample with minor post hoc re-specifications (two error covariances on Satiety Responsiveness and an item-factor covariance to account for a cross-loading of an item (Fussiness) on Satiety Responsiveness). The re-specified model showed reasonable fit in both the Indian and Chinese samples. Cronbach’s α estimates ranged from .73 to .91 in the Australian sample and .61–.88 in the immigrant samples. This study supports the appropriateness of the CEBQ in the multicultural Australian context.
Resumo:
The Child Feeding Questionnaire (CFQ) developed by Birch and colleagues (2001) is a widely used tool for measuring parental feeding beliefs, attitudes and practices. However, the appropriateness of the CFQ for use with Chinese populations is unknown. This study tested the construct validity of a novel Chinese version of the CFQ using confirmatory factor analysis (CFA). Participants included a convenience sample of 254 Chinese-Australian mothers of children aged 1-4 years. Prior to testing, the questionnaire was translated into Chinese using a translation-back-translation method, one item was re-worded to be culturally appropriate, a new item was added (monitoring), and five items that were not age-appropriate for the sample were removed. Based on previous literature, both a 7-factor and an 8-factor model were assessed via CFA. Results showed that the 8-factor model, which separated restriction and use of food rewards, improved the conceptual clarity of the constructs and provided a good fit to the data. Internal consistency of all eight factors was acceptable (Cronbach’s α: .60−.93). This modified 8-factor CFQ appears to be a linguistically and culturally appropriate instrument for assessing feeding beliefs and practices in Chinese-Australian mothers of young children.
Resumo:
Introduction Canadian C spine rule and NEXUS criteria have identified risk factors for cervical spine injury in adults but not for children. PECARN has developed an 8 variable model for cervical spine injury in children. We sought to identify the mechanism, prevalence of PECARN risk factors, injury patterns, and management of severe Paediatric cervical spine injuries presenting to the major children’s hospitals in Brisbane, Australia. Methods This a retrospective study of the children with cervical spine injuries who presented directly or were referred to the major children’s hospitals in Brisbane over 5 years. Results There were 38 patients with 18 male and 20 female.The mean age was 8.6 years. They were divided into two groups according to their age, (Group 1 < =8 years had 18 (47%) patients, while group 2 (9-15 years) had 20 (53%) patients. Motor vehicle related injuries were the most common (61%) in Group 1 while it was sporting injuries (50%) in group 2. All patients in group 1 had upper cervical injury (C0-C2) while subaxial injuries were most common in group 2 (66.6%). 82% of the patients had 2 or more PECARN risk factors. 18 children (47%) had normal neurological assessment at presentation, 6 (16%) had radicular symptoms, 11 (29%) could not be assessed as they had already been intubated due to the severity of the injury, 3 (8%) had incomplete cord injury. 29 (69%) patients had normal neurological assessment at final follow up and 2 children died from their injuries. Conclusion Our study confirms that younger children sustain upper cervical injuries most commonly secondary to motor vehicle accidents, while the older sustain subaxial injuries from sporting activities. The significant prevalence of the PECARN risk factors among this cohort of patients have led to them being incorporated into a protocol at these hospitals used to assess patients with suspected cervical spinal injury.
Resumo:
The collective purpose of these two studies was to determine a link between the V02 slow component and the muscle activation patterns that occur during cycling. Six, male subjects performed an incremental cycle ergometer exercise test to determine asub-TvENT (i.e. 80% of TvENT) and supra-TvENT (TvENT + 0.75*(V02 max - TvENT) work load. These two constant work loads were subsequently performed on either three or four occasions for 8 mins each, with V02 captured on a breath-by-breath basis for every test, and EMO of eight major leg muscles collected on one occasion. EMG was collected for the first 10 s of every 30 s period, except for the very first 10 s period. The V02 data was interpolated, time aligned, averaged and smoothed for both intensities. Three models were then fitted to the V02 data to determine the kinetics responses. One of these models was mono-exponential, while the other two were biexponential. A second time delay parameter was the only difference between the two bi-exponential models. An F-test was used to determine significance between the biexponential models using the residual sum of squares term for each model. EMO was integrated to obtain one value for each 10 s period, per muscle. The EMG data was analysed by a two-way repeated measures ANOV A. A correlation was also used to determine significance between V02 and IEMG. The V02 data during the sub-TvENT intensity was best described by a mono-exponential response. In contrast, during supra-TvENT exercise the two bi-exponential models best described the V02 data. The resultant F-test revealed no significant difference between the two models and therefore demonstrated that the slow component was not delayed relative to the onset of the primary component. Furthermore, only two parameters were deemed to be significantly different based upon the two models. This is in contrast to other findings. The EMG data, for most muscles, appeared to follow the same pattern as V02 during both intensities of exercise. On most occasions, the correlation coefficient demonstrated significance. Although some muscles demonstrated the same relative increase in IEMO based upon increases in intensity and duration, it cannot be assumed that these muscles increase their contribution to V02 in a similar fashion. Larger muscles with a higher percentage of type II muscle fibres would have a larger increase in V02 over the same increase in intensity.
Resumo:
Electrification of vehicular systems has gained increased momentum in recent years with particular attention to constant power loads (CPLs). Since a CPL potentially threatens system stability, stability analysis of hybrid electric vehicle with CPLs becomes necessary. A new power buffer configuration with battery is introduced to mitigate the effect of instability caused by CPLs. Model predictive control (MPC) is applied to regulate the power buffer to decouple source and load dynamics. Moreover, MPC provides an optimal tradeoff between modification of load impedance, variation of dc-link voltage and battery current ripples. This is particularly important during transients or starting of system faults, since battery response is not very fast. Optimal tradeoff becomes even more significant when considering low-cost power buffer without battery. This paper analyzes system models for both voltage swell and voltage dip faults. Furthermore, a dual mode MPC algorithm is implemented in real time offering improved stability. A comprehensive set of experimental results is included to verify the efficacy of the proposed power buffer.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.
Resumo:
A new method for estimating the time to colonization of Methicillin-resistant Staphylococcus Aureus (MRSA) patients is developed in this paper. The time to colonization of MRSA is modelled using a Bayesian smoothing approach for the hazard function. There are two prior models discussed in this paper: the first difference prior and the second difference prior. The second difference prior model gives smoother estimates of the hazard functions and, when applied to data from an intensive care unit (ICU), clearly shows increasing hazard up to day 13, then a decreasing hazard. The results clearly demonstrate that the hazard is not constant and provide a useful quantification of the effect of length of stay on the risk of MRSA colonization which provides useful insight.
Resumo:
In architecture courses, instilling a wider understanding of the industry specific representations practiced in the Building Industry is normally done under the auspices of Technology and Science subjects. Traditionally, building industry professionals communicated their design intentions using industry specific representations. Originally these mainly two dimensional representations such as plans, sections, elevations, schedules, etc. were produced manually, using a drawing board. Currently, this manual process has been digitised in the form of Computer Aided Design and Drafting (CADD) or ubiquitously simply CAD. While CAD has significant productivity and accuracy advantages over the earlier manual method, it still only produces industry specific representations of the design intent. Essentially, CAD is a digital version of the drawing board. The tool used for the production of these representations in industry is still mainly CAD. This is also the approach taken in most traditional university courses and mirrors the reality of the situation in the building industry. A successor to CAD, in the form of Building Information Modelling (BIM), is presently evolving in the Construction Industry. CAD is mostly a technical tool that conforms to existing industry practices. BIM on the other hand is revolutionary both as a technical tool and as an industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team. Essentially, BIM builds any building twice: once in the virtual world, where any faults are resolved, and finally, in the real world. There is, however, no established model for learning through the use of this technology in Architecture courses. Queensland University of Technology (QUT), a tertiary institution that maintains close links with industry, recognises the importance of equipping their graduates with skills that are relevant to industry. BIM skills are currently in increasing demand throughout the construction industry through the evolution of construction industry practices. As such, during the second half of 2008, QUT 4th year architectural students were formally introduced for the first time to BIM, as both a technology and as an industry practice. This paper will outline the teaching team’s experiences and methodologies in offering a BIM unit (Architectural Technology and Science IV) at QUT for the first time and provide a description of the learning model. The paper will present the results of a survey on the learners’ perspectives of both BIM and their learning experiences as they learn about and through this technology.
Resumo:
In a university context how should colour be taught in order to engage students? Entwistle states, ‘What we learn depends on how we learn, and why we have to learn it.’ Therefore, there is a need to address the accumulating evidence that highlights the effects of learning environments on the quality of student learning when considering colour education. It is necessary to embrace the contextual demands while ensuring that the student knowledge of colour and the joy of discovering its characteristics in practice are enhanced. Institutional policy is forcing educators to re-evaluate traditional studio’s effectiveness and the intensive 'hands-on' interactive approach that is embedded in such an approach. As curriculum development involves not only theory and project work, the classroom culture and physical environment also need to be addressed. The increase in student numbers impacting the number of academic staff/student ratio, availability of teaching support as well as increasing variety of student age, work commitments, learning styles and attitudes have called for positive changes to how we teach. The Queensland University of Technology’s restructure in 2005 was a great opportunity to re-evaluate and redesign the approach to teaching within the design units of Interior Design undergraduate program –including colour. The resultant approach “encapsulates a mode of delivery, studio structure, as well as the learning context in which students and staff interact to facilitate learning”1 with a potential “to be integrated into a range of Interior Design units as it provides an adaptive educational framework rather than a prescriptive set of rules”.