178 resultados para Objective functions
em Queensland University of Technology - ePrints Archive
Resumo:
Multi-Objective optimization for designing of a benchmark cogeneration system known as CGAM cogeneration system has been performed. In optimization approach, the thermoeconomic and Environmental aspects have been considered, simultaneously. The environmental objective function has been defined and expressed in cost terms. One of the most suitable optimization techniques developed using a particular class of search algorithms known as; Multi-Objective Particle Swarm Optimization (MOPSO) algorithm has been used here. This approach has been applied to find the set of Pareto optimal solutions with respect to the aforementioned objective functions. An example of fuzzy decision-making with the aid of Bellman-Zadeh approach has been presented and a final optimal solution has been introduced.
Resumo:
The sugarcane transport system plays a critical role in the overall performance of Australia’s sugarcane industry. An inefficient sugarcane transport system interrupts the raw sugarcane harvesting process, delays the delivery of sugarcane to the mill, deteriorates the sugar quality, increases the usage of empty bins, and leads to the additional sugarcane production costs. Due to these negative effects, there is an urgent need for an efficient sugarcane transport schedule that should be developed by the rail schedulers. In this study, a multi-objective model using mixed integer programming (MIP) is developed to produce an industry-oriented scheduling optimiser for sugarcane rail transport system. The exact MIP solver (IBM ILOG-CPLEX) is applied to minimise the makespan and the total operating time as multi-objective functions. Moreover, the so-called Siding neighbourhood search (SNS) algorithm is developed and integrated with Sidings Satisfaction Priorities (SSP) and Rail Conflict Elimination (RCE) algorithms to solve the problem in a more efficient way. In implementation, the sugarcane transport system of Kalamia Sugar Mill that is a coastal locality about 1050 km northwest of Brisbane city is investigated as a real case study. Computational experiments indicate that high-quality solutions are obtainable in industry-scale applications.
Resumo:
There are many applications in aeronautical/aerospace engineering where some values of the design parameters states cannot be provided or determined accurately. These values can be related to the geometry(wingspan, length, angles) and or to operational flight conditions that vary due to the presence of uncertainty parameters (Mach, angle of attack, air density and temperature, etc.). These uncertainty design parameters cannot be ignored in engineering design and must be taken into the optimisation task to produce more realistic and reliable solutions. In this paper, a robust/uncertainty design method with statistical constraints is introduced to produce a set of reliable solutions which have high performance and low sensitivity. Robust design concept coupled with Multi Objective Evolutionary Algorithms (MOEAs) is defined by applying two statistical sampling formulas; mean and variance/standard deviation associated with the optimisation fitness/objective functions. The methodology is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing and asynchronous evaluation. It is implemented for two practical Unmanned Aerial System (UAS) design problems; the flrst case considers robust multi-objective (single disciplinary: aerodynamics) design optimisation and the second considers a robust multidisciplinary (aero structures) design optimisation. Numerical results show that the solutions obtained by the robust design method with statistical constraints have a more reliable performance and sensitivity in both aerodynamics and structures when compared to the baseline design.
Resumo:
With the advent of large-scale wind farms and their integration into electrical grids, more uncertainties, constraints and objectives must be considered in power system development. It is therefore necessary to introduce risk-control strategies into the planning of transmission systems connected with wind power generators. This paper presents a probability-based multi-objective model equipped with three risk-control strategies. The model is developed to evaluate and enhance the ability of the transmission system to protect against overload risks when wind power is integrated into the power system. The model involves: (i) defining the uncertainties associated with wind power generators with probability measures and calculating the probabilistic power flow with the combined use of cumulants and Gram-Charlier series; (ii) developing three risk-control strategies by specifying the smallest acceptable non-overload probability for each branch and the whole system, and specifying the non-overload margin for all branches in the whole system; (iii) formulating an overload risk index based on the non-overload probability and the non-overload margin defined; and (iv) developing a multi-objective transmission system expansion planning (TSEP) model with the objective functions composed of transmission investment and the overload risk index. The presented work represents a superior risk-control model for TSEP in terms of security, reliability and economy. The transmission expansion planning model with the three risk-control strategies demonstrates its feasibility in the case study using two typical power systems
Resumo:
The selection of optimal camera configurations (camera locations, orientations etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we introduce a statistical formulation of the optimal selection of camera configurations as well as propose a Trans-Dimensional Simulated Annealing (TDSA) algorithm to effectively solve the problem. We compare our approach with a state-of-the-art method based on Binary Integer Programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than 2 alternative heuristics designed to deal with the scalability issue of BIP.
Resumo:
The selection of optimal camera configurations (camera locations, orientations, etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we propose a statistical framework of the problem as well as propose a trans-dimensional simulated annealing algorithm to effectively deal with it. We compare our approach with a state-of-the-art method based on binary integer programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than two alternative heuristics designed to deal with the scalability issue of BIP. Last, we show the versatility of our approach using a number of specific scenarios.
Resumo:
This paper presents an efficient algorithm for multi-objective distribution feeder reconfiguration based on Modified Honey Bee Mating Optimization (MHBMO) approach. The main objective of the Distribution feeder reconfiguration (DFR) is to minimize the real power loss, deviation of the nodes’ voltage. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. So the metahuristic algorithm has been applied to this problem. This paper describes the full algorithm to Objective functions paid, The results of simulations on a 32 bus distribution system is given and shown high accuracy and optimize the proposed algorithm in power loss minimization.
Resumo:
Multi-objective optimization is an active field of research with broad applicability in aeronautics. This report details a variant of the original NSGA-II software aimed to improve the performances of such a widely used Genetic Algorithm in finding the optimal Pareto-front of a Multi-Objective optimization problem for the use of UAV and aircraft design and optimsaiton. Original NSGA-II works on a population of predetermined constant size and its computational cost to evaluate one generation is O(mn^2 ), being m the number of objective functions and n the population size. The basic idea encouraging this work is that of reduce the computational cost of the NSGA-II algorithm by making it work on a population of variable size, in order to obtain better convergence towards the Pareto-front in less time. In this work some test functions will be tested with both original NSGA-II and VPNSGA-II algorithms; each test will be timed in order to get a measure of the computational cost of each trial and the results will be compared.
Resumo:
Previous work by Professor John Frazer on Evolutionary Architecture provides a basis for the development of a system evolving architectural envelopes in a generic and abstract manner. Recent research by the authors has focused on the implementation of a virtual environment for the automatic generation and exploration of complex forms and architectural envelopes based on solid modelling techniques and the integration of evolutionary algorithms, enhanced computational and mathematical models. Abstract data types are introduced for genotypes in a genetic algorithm order to develop complex models using generative and evolutionary computing techniques. Multi-objective optimisation techniques are employed for defining the fitness function in the evaluation process.
Resumo:
This study is the first to investigate the effect of prolonged reading on reading performance and visual functions in students with low vision. The study focuses on one of the most common modes of achieving adequate magnification for reading by students with low vision, their close reading distance (proximal or relative distance magnification). Close reading distances impose high demands on near visual functions, such as accommodation and convergence. Previous research on accommodation in children with low vision shows that their accommodative responses are reduced compared to normal vision. In addition, there is an increased lag of accommodation for higher stimulus levels as may occur at close reading distance. Reduced accommodative responses in low vision and higher lag of accommodation at close reading distances together could impact on reading performance of students with low vision especially during prolonged reading tasks. The presence of convergence anomalies could further affect reading performance. Therefore, the aims of the present study were 1) To investigate the effect of prolonged reading on reading performance in students with low vision 2) To investigate the effect of prolonged reading on visual functions in students with low vision. This study was conducted as cross-sectional research on 42 students with low vision and a comparison group of 20 students with normal vision, aged 7 to 20 years. The students with low vision had vision impairments arising from a range of causes and represented a typical group of students with low vision, with no significant developmental delays, attending school in Brisbane, Australia. All participants underwent a battery of clinical tests before and after a prolonged reading task. An initial reading-specific history and pre-task measurements that included Bailey-Lovie distance and near visual acuities, Pelli-Robson contrast sensitivity, ocular deviations, sensory fusion, ocular motility, near point of accommodation (pull-away method), accuracy of accommodation (Monocular Estimation Method (MEM)) retinoscopy and Near Point of Convergence (NPC) (push-up method) were recorded for all participants. Reading performance measures were Maximum Oral Reading Rates (MORR), Near Text Visual Acuity (NTVA) and acuity reserves using Bailey-Lovie text charts. Symptoms of visual fatigue were assessed using the Convergence Insufficiency Symptom Survey (CISS) for all participants. Pre-task measurements of reading performance and accuracy of accommodation and NPC were compared with post-task measurements, to test for any effects of prolonged reading. The prolonged reading task involved reading a storybook silently for at least 30 minutes. The task was controlled for print size, contrast, difficulty level and content of the reading material. Silent Reading Rate (SRR) was recorded every 2 minutes during prolonged reading. Symptom scores and visual fatigue scores were also obtained for all participants. A visual fatigue analogue scale (VAS) was used to assess visual fatigue during the task, once at the beginning, once at the middle and once at the end of the task. In addition to the subjective assessments of visual fatigue, tonic accommodation was monitored using a photorefractor (PlusoptiX CR03™) every 6 minutes during the task, as an objective assessment of visual fatigue. Reading measures were done at the habitual reading distance of students with low vision and at 25 cms for students with normal vision. The initial history showed that the students with low vision read for significantly shorter periods at home compared to the students with normal vision. The working distances of participants with low vision ranged from 3-25 cms and half of them were not using any optical devices for magnification. Nearly half of the participants with low vision were able to resolve 8-point print (1M) at 25 cms. Half of the participants in the low vision group had ocular deviations and suppression at near. Reading rates were significantly reduced in students with low vision compared to those of students with normal vision. In addition, there were a significantly larger number of participants in the low vision group who could not sustain the 30-minute task compared to the normal vision group. However, there were no significant changes in reading rates during or following prolonged reading in either the low vision or normal vision groups. Individual changes in reading rates were independent of their baseline reading rates, indicating that the changes in reading rates during prolonged reading cannot be predicted from a typical clinical assessment of reading using brief reading tasks. Contrary to previous reports the silent reading rates of the students with low vision were significantly lower than their oral reading rates, although oral and silent reading was assessed using different methods. Although the visual acuity, contrast sensitivity, near point of convergence and accuracy of accommodation were significantly poorer for the low vision group compared to those of the normal vision group, there were no significant changes in any of these visual functions following prolonged reading in either group. Interestingly, a few students with low vision (n =10) were found to be reading at a distance closer than their near point of accommodation. This suggests a decreased sensitivity to blur. Further evaluation revealed that the equivalent intrinsic refractive errors (an estimate of the spherical dioptirc defocus which would be expected to yield a patient’s visual acuity in normal subjects) were significantly larger for the low vision group compared to those of the normal vision group. As expected, accommodative responses were significantly reduced for the low vision group compared to the expected norms, which is consistent with their close reading distances, reduced visual acuity and contrast sensitivity. For those in the low vision group who had an accommodative error exceeding their equivalent intrinsic refractive errors, a significant decrease in MORR was found following prolonged reading. The silent reading rates however were not significantly affected by accommodative errors in the present study. Suppression also had a significant impact on the changes in reading rates during prolonged reading. The participants who did not have suppression at near showed significant decreases in silent reading rates during and following prolonged reading. This impact of binocular vision at near on prolonged reading was possibly due to the high demands on convergence. The significant predictors of MORR in the low vision group were age, NTVA, reading interest and reading comprehension, accounting for 61.7% of the variances in MORR. SRR was not significantly influenced by any factors, except for the duration of the reading task sustained; participants with higher reading rates were able to sustain a longer reading duration. In students with normal vision, age was the only predictor of MORR. Participants with low vision also reported significantly greater visual fatigue compared to the normal vision group. Measures of tonic accommodation however were little influenced by visual fatigue in the present study. Visual fatigue analogue scores were found to be significantly associated with reading rates in students with low vision and normal vision. However, the patterns of association between visual fatigue and reading rates were different for SRR and MORR. The participants with low vision with higher symptom scores had lower SRRs and participants with higher visual fatigue had lower MORRs. As hypothesized, visual functions such as accuracy of accommodation and convergence did have an impact on prolonged reading in students with low vision, for students whose accommodative errors were greater than their equivalent intrinsic refractive errors, and for those who did not suppress one eye. Those students with low vision who have accommodative errors higher than their equivalent intrinsic refractive errors might significantly benefit from reading glasses. Similarly, considering prisms or occlusion for those without suppression might reduce the convergence demands in these students while using their close reading distances. The impact of these prescriptions on reading rates, reading interest and visual fatigue is an area of promising future research. Most importantly, it is evident from the present study that a combination of factors such as accommodative errors, near point of convergence and suppression should be considered when prescribing reading devices for students with low vision. Considering these factors would also assist rehabilitation specialists in identifying those students who are likely to experience difficulty in prolonged reading, which is otherwise not reflected during typical clinical reading assessments.
Resumo:
In this paper we investigate the heuristic construction of bijective s-boxes that satisfy a wide range of cryptographic criteria including algebraic complexity, high nonlinearity, low autocorrelation and have none of the known weaknesses including linear structures, fixed points or linear redundancy. We demonstrate that the power mappings can be evolved (by iterated mutation operators alone) to generate bijective s-boxes with the best known tradeoffs among the considered criteria. The s-boxes found are suitable for use directly in modern encryption algorithms.
Resumo:
Structural damage detection using measured dynamic data for pattern recognition is a promising approach. These pattern recognition techniques utilize artificial neural networks and genetic algorithm to match pattern features. In this study, an artificial neural network–based damage detection method using frequency response functions is presented, which can effectively detect nonlinear damages for a given level of excitation. The main objective of this article is to present a feasible method for structural vibration–based health monitoring, which reduces the dimension of the initial frequency response function data and transforms it into new damage indices and employs artificial neural network method for detecting different levels of nonlinearity using recognized damage patterns from the proposed algorithm. Experimental data of the three-story bookshelf structure at Los Alamos National Laboratory are used to validate the proposed method. Results showed that the levels of nonlinear damages can be identified precisely by the developed artificial neural networks. Moreover, it is identified that artificial neural networks trained with summation frequency response functions give higher precise damage detection results compared to the accuracy of artificial neural networks trained with individual frequency response functions. The proposed method is therefore a promising tool for structural assessment in a real structure because it shows reliable results with experimental data for nonlinear damage detection which renders the frequency response function–based method convenient for structural health monitoring.
Resumo:
The appealing concept of optimal harvesting is often used in fisheries to obtain new management strategies. However, optimality depends on the objective function, which often varies, reflecting the interests of different groups of people. The aim of maximum sustainable yield is to extract the greatest amount of food from replenishable resources in a sustainable way. Maximum sustainable yield may not be desirable from an economic point of view. Maximum economic yield that maximizes the profit of fishing fleets (harvesting sector) but ignores socio-economic benefits such as employment and other positive externalities. It may be more appropriate to use the maximum economic yield that which is based on the value chain of the overall fishing sector, to reflect better society's interests. How to make more efficient use of a fishery for society rather than fishing operators depends critically on the gain function parameters including multiplier effects and inclusion or exclusion of certain costs. In particular, the optimal effort level based on the overall value chain moves closer to the optimal effort for the maximum sustainable yield because of the multiplier effect. These issues are illustrated using the Australian Northern Prawn Fishery.