28 resultados para OSTEOPOROSIS POSMENOPÁUSICA - TRATAMIENTO
em Queensland University of Technology - ePrints Archive
Resumo:
Most current studies on the pathogenesis of osteoporosis emphasize the bone metabolic activities occurring on endosteal surfaces, whereas the periosteal aspect is somewhat neglected. In terms of bone physiology, periosteum plays a determining role in de novo cortical bone formation and cortical bone expansion through periosteum is the most efficient way of increasing bone strength against fractures. Despite the important role of periosteum in the pathogenesis and treatment of osteoporosis, little is known about the structural and cellular features of periosteum in osteoporosis. This chapter will focus on the major changes occurring in the periosteum of osteoporosis and possible implications of these changes in the pathogenesis of osteoporosis. The changes identified in the periosteum of osteoporosis are mainly located in the metaphyseal compartment, which include: (a) much thicker and more cellular cambial layer; (b) increased number of TRAP (tartrate resistant acid phosphatase), VEGF (vascular endothelial growth factor) cells and the degree of vascularization; and (c) enhanced expression of sympathetic nerve fibers. The structural and cellular changes of osteoporotic periosteum indicate that periosteum plays an important role in the cortical bone resorption in metaphyseal areas and this pathological process may be regulated by the sympathetic nervous system.
Resumo:
Background : Postmenopausal osteoporosis is common and is associated with stooped posture, loss of height, back pain and fractures. Objectives/methods : This evaluation is of clinical outcome trials with tibolone (Long-Term Intervention of Fractures with Tibolone) and strontium ranelate (Spinal Osteoporosis Therapeutic Intervention) in postmenopausal osteoporosis. Results : Although the Long-Term Intervention of Fractures with Tibolone trial established that tibolone decreased the incidence of vertebral and non-vertebral fractures in postmenopausal osteoporosis, it also showed that tibolone caused a small increase in the incidence of stoke. The Spinal Osteoporosis Therapeutic Intervention trial established that strontium ranelate decreased the incidence of vertebral fractures, but had little effect on the incidence of non-vertebral fractures. Conclusions : As some of the bisphosphonates (alendronate, risedronate, zoledronic acid) have been shown to prevent hip fractures without increasing the incidence of stroke, they should be preferred to tibolone and strontium in the treatment of postmenopausal osteoporosis.
Resumo:
Osteoporosis and Paget’s bone disease are the most common diseases of the bone. In addition to glucocorticoid treatment, there are many other secondary causes of osteoporosis. Bisphosphonates are used to treat these bone conditions. Zoledronic acid is the most potent bisphosphonate at inhibiting bone resorption. In osteoporosis, zoledronic acid increases bone mineral density for at least 1 year following a single intravenous administration. The efficacy and safety of zoledronic acid in the treatment of osteoporosis and Paget’s bone disease are reviewed. This article also covers the studies of the effects of zoledronic acid in the bone loss associated with the secondary osteoporosis.
Resumo:
Background: Bone loss associated with low oestrogen levels in postmenopausal women, and with androgen deprivation therapy in men with hormone-sensitive prostate cancer, result in an increased incidence of fractures. Denosumab has been shown to increase bone mineral density in these two conditions. Objectives/methods: The objective of this evaluation is to review the clinical trials that have studied clinical endpoints in these conditions. Results: FREEDOM (Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months) was an International Phase III clinical trial that measured the clinical endpoints with denosumab in postmenopausal women with osteoporosis. At 36 months, new vertebral fractures had occurred in 7.2% of subjects in the placebo group and this was lowered to 2.3% of subjects treated with denosumab. HALT (Denosumab Hormone Ablation Bone Loss Trial) studied the clinical endpoints in men with non-metastatic prostate cancer receiving androgen-deprivation therapy. The incidence of vertebral fractures was significantly lower in the denosumab group (1.5%) than in the placebo group (3.9%). The incidence of adverse effects with denosumab in both clinical trials was low. Conclusions: Denosumab reduces the incidence of fractures in postmenopausal women with osteoporosis and in men with non-metastatic prostate cancer receiving androgen-deprivation therapy. Denosumab is well tolerated.
Resumo:
The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus for the assessment of osteoporosis was first described within this journal 25 years ago. It was recognized in 2006 by Universities UK as being one of the ‘100 discoveries and developments in UK Universities that have changed the world’ over the past 50 years. In 2008, the UK's Department of Health also recognized BUA assessment of osteoporosis in a publication highlighting 11 projects that have contributed to ‘60 years of NHS research benefiting patients’. The BUA technique has been extensively clinically validated and is utilized worldwide, with at least seven commercial systems currently providing calcaneal BUA measurement. However, there is still no fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone. This review aims to provide an ‘engineering in medicine’ perspective and proposes a new paradigm based upon phase cancellation due to variation in propagation transit time across the receive transducer face to explain the non-linear relationship between BUA and bone volume fraction in cancellous bone.
Resumo:
The primary clinical role of the non-invasive physical measurement of a bone, generally referred to as ‘bone densitometry,’ is to identify those subjects at risk of an osteoporotic fracture and their subsequent response to pharmaceutical intervention. The true ‘gold standard’ measurement of the mechanical integrity of a bone, and hence its fracture load, is a destructive test, generally performed by compressing either a regular shaped sample or whole bone.
Resumo:
Osteoporosis imposes a tremendous burden on Australia : 1.2 million Australians have osteoporosis and 6.3 million have Osteopenia. In the 2007-08 financial year, 82000 Australians suffered fragility fractures, of Which >17000 were hip fractures. In the 2000-01 financial year, direct costs were estimated at $1.9 billion per year and an additional $5.6 billion on indirect costs. Osteoporosis was designated a National Health Priority Area in 2002; however, implementation of national plans has not yet matched the rhetoric in terms of urgency. Building healthy bones throughout life, the Osteoporosis Australia strategy to prevent osteoporosis throughout the life cycle, presents an evidence-informed set of recommendations for consumers, health care professionals and policymakers. The strategy was adopted by consensus at the Osteoporosis Australia Summit in Sydney, 20 October 2011. Primary objectives throughout the life cycle are: to maximise peak bone mass during childhood and adolescence to prevent premature bone loss and improve or maintain muscle mass, strength and functional capacity in healthy adults to prevent and treat osteoporosis in order to minimise the risk of suffering fragility fractures, and reduce falls risk, in older people. The recommendations focus on three affordable and important interventions to ensure people have adequate calcium intake, vitamin D levels and appropriate, physical activity throughout their lives. Recommendations relevant to all stages of life include: daily dietary calcium intakes should be consistent with Australian and New Zealand guidelines serum levels of vitamin D in the general population should be above 50 nmol/L in winter or early spring for optimal bone health regular weight-bearing physical activity, Muscle strengthening exercises and challenging balance/ mobility activities should be conducted in a safe environment.
Resumo:
To investigate the correlation between postmenopausal osteoporosis (PMO) and the pathogenesis of periodontitis, ovariectomized rats were generated and the experimental periodontitis was induced using a silk ligature. The inflammatory factors and bone metabolic markers were measured in the serum and periodontal tissues of ovariectomized rats using an automatic chemistry analyzer, enzyme-linked immunosorbent assays, and immunohistochemistry. The bone mineral density of whole body, pelvis, and spine was analyzed using dual-energy X-ray absorptiometry and image analysis. All data were analyzed using SPSS 13.0 statistical software. It was found that ovariectomy could upregulate the expression of interleukin- (IL-)6, the receptor activator of nuclear factor-κB ligand (RANKL), and osteoprotegerin (OPG) and downregulate IL-10 expression in periodontal tissues, which resulted in progressive alveolar bone loss in experimental periodontitis. This study indicates that changes of cytokines and bone turnover markers in the periodontal tissues of ovariectomized rats contribute to the damage of periodontal tissues.
Resumo:
The effects of estrogen deficiency on bone characteristics are site-dependent, with the most commonly studied sites being appendicular long bones (proximal femur and tibia) and axial bones (vertebra). The effect on the maxillary and mandibular bones is still inconsistent and requires further investigation. This study was designed to evaluate bone quality in the posterior maxilla of ovariectomized rats in order to validate this site as an appropriate model to study the effect of osteoporotic changes. Methods: Forty-eight 3-month-old female Sprague-Dawley rats were randomly divided into two groups: an ovariectomized group (OVX, n=24) and Sham-operated group (SHAM, n=24). Six rats were randomly sacrificed from both groups at time points 8, 12, 16 and 20 weeks. The samples from tibia and maxilla were collected for Micro CT and histological analysis. For the maxilla, the volume of interest (VOI) area focused on the furcation areas of the first and second molar. Trabecular bone volume fraction (BV/TV, %), trabecular thickness (Tb.Th.), trabecular number (Tb.N.), trabecular separation (Tb.Sp.), and connectivity density (Conn.Dens) were analysed after Micro CT scanning. Results: At 8 weeks the indices BV/TV, Tb.Sp, Tb.N and Conn.Dens showed significant differences (P<0.05) between the OVX and SHAM groups in the tibia. Compared with the tibia, the maxilla developed osteoporosis at a later stage, with significant changes in maxillary bone density only occurring after 12 weeks. Compared with the SHAM group, both the first and second molars of the OVX group showed significantly decreased BV/TV values from 12 weeks, and these changes were sustained through 16 and 20 weeks. For Tb.Sp, there were significant increases in bone values for the OVX group compared with the SHAM group at 12, 16 and 20 weeks. Histological changes were highly consistent with Micro CT results. Conclusion: This study established a method to quantify the changes of intra-radicular alveolar bone in the posterior maxilla in an accepted rat osteoporosis model. The degree of the osteoporotic changes to trabecular bone architecture is site-dependent and at least 3 months are required for the osteoporotic effects to be apparent in the posterior maxilla following rat OVX.