105 resultados para Nitrogen compounds
em Queensland University of Technology - ePrints Archive
Resumo:
The Rhodococcus genus exhibits diverse enzymatic activity that can be exploited in the conversion of natural and anthropogenic nitrogenous compounds. This catalytic response provides a selective advantage in terms of available nutrients while also serving to remove otherwise harmful xenobiotics. This review provides a critical assessment of the literature on bioconversion of organo-nitrogen compounds with a consideration of applications in bioremediation and commercial biotechnology. By examining the major nitro-organic compounds (amino acids, amines, nitriles, amides and nitroaromatics) in turn, the considerable repertoire of Rhodococcus spp. is established. The available published enzyme reaction data is coupled with genomic characterisation to provide a molecular basis for Rhodococcus enzyme activity with an assessment of the cellular properties that aid substrate accessibility and ensure stability. The metabolic gene clusters associated with the observed reaction pathways are identified and future directions in enzyme optimisation and metabolic engineering are assessed. © 2014 Society of Chemical Industry.
Resumo:
This thesis details methodology to estimate urban stormwater quality based on a set of easy to measure physico-chemical parameters. These parameters can be used as surrogate parameters to estimate other key water quality parameters. The key pollutants considered in this study are nitrogen compounds, phosphorus compounds and solids. The use of surrogate parameter relationships to evaluate urban stormwater quality will reduce the cost of monitoring and so that scientists will have added capability to generate a large amount of data for more rigorous analysis of key urban stormwater quality processes, namely, pollutant build-up and wash-off. This in turn will assist in the development of more stringent stormwater quality mitigation strategies. The research methodology was based on a series of field investigations, laboratory testing and data analysis. Field investigations were conducted to collect pollutant build-up and wash-off samples from residential roads and roof surfaces. Past research has identified that these impervious surfaces are the primary pollutant sources to urban stormwater runoff. A specially designed vacuum system and rainfall simulator were used in the collection of pollutant build-up and wash-off samples. The collected samples were tested for a range of physico-chemical parameters. Data analysis was conducted using both univariate and multivariate data analysis techniques. Analysis of build-up samples showed that pollutant loads accumulated on road surfaces are higher compared to the pollutant loads on roof surfaces. Furthermore, it was found that the fraction of solids smaller than 150 ìm is the most polluted particle size fraction in solids build-up on both roads and roof surfaces. The analysis of wash-off data confirmed that the simulated wash-off process adopted for this research agrees well with the general understanding of the wash-off process on urban impervious surfaces. The observed pollutant concentrations in wash-off from road surfaces were different to pollutant concentrations in wash-off from roof surfaces. Therefore, firstly, the identification of surrogate parameters was undertaken separately for roads and roof surfaces. Secondly, a common set of surrogate parameter relationships were identified for both surfaces together to evaluate urban stormwater quality. Surrogate parameters were identified for nitrogen, phosphorus and solids separately. Electrical conductivity (EC), total organic carbon (TOC), dissolved organic carbon (DOC), total suspended solids (TSS), total dissolved solids (TDS), total solids (TS) and turbidity (TTU) were selected as the relatively easy to measure parameters. Consequently, surrogate parameters for nitrogen and phosphorus were identified from the set of easy to measure parameters for both road surfaces and roof surfaces. Additionally, surrogate parameters for TSS, TDS and TS which are key indicators of solids were obtained from EC and TTU which can be direct field measurements. The regression relationships which were developed for surrogate parameters and key parameter of interest were of a similar format for road and roof surfaces, namely it was in the form of simple linear regression equations. The identified relationships for road surfaces were DTN-TDS:DOC, TP-TS:TOC, TSS-TTU, TDS-EC and TSTTU: EC. The identified relationships for roof surfaces were DTN-TDS and TSTTU: EC. Some of the relationships developed had a higher confidence interval whilst others had a relatively low confidence interval. The relationships obtained for DTN-TDS, DTN-DOC, TP-TS and TS-EC for road surfaces demonstrated good near site portability potential. Currently, best management practices are focussed on providing treatment measures for stormwater runoff at catchment outlets where separation of road and roof runoff is not found. In this context, it is important to find a common set of surrogate parameter relationships for road surfaces and roof surfaces to evaluate urban stormwater quality. Consequently DTN-TDS, TS-EC and TS-TTU relationships were identified as the common relationships which are capable of providing measurements of DTN and TS irrespective of the surface type.
Resumo:
A copolymer comprising 1,4-diketopyrrolo[3,4-c]pyrrole (DPP) and thieno[3,2-b]thiophene moieties, PDBT-co-TT, shows high hole mobility of up to 0.94 cm2 V-1 s-1 in organic thin-film transistors. The strong intermolecular interactions originated from π-π stacking and donor-acceptor interaction lead to the formation of interconnected polymer networks having an ordered lamellar structure, which have established highly efficient pathways for charge carrier transport.
Resumo:
Pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione or diketopyrrolopyrrole (DPP) is a useful electron-withdrawing fused aromatic moiety for the preparation of donor-acceptor polymers as active semiconductors for organic electronics. This study uses a DPP-furan-containing building block, 3,6-di(furan-2-yl)pyrrolo[3,4- c]pyrrole-1,4(2H,5H)-dione (DBF), to couple with a 2,2′-bithiophene unit, forming a new donor-acceptor copolymer, PDBFBT. Compared to its structural analogue, 3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DBT), DBF is found to cause blue shifts of the absorption spectra both in solution and in thin films and a slight reduction of the highest occupied molecular orbital (HOMO) energy level of the resulting PDBFBT. Despite the fact that its thin films are less crystalline and have a rather disordered chain orientation in the crystalline domains, PDBFBT shows very high hole mobility up to 1.54 cm 2 V-1 s-1 in bottom-gate, top-contact organic thin film transistors.
Resumo:
The crystal structures of the proton-transfer compounds of 5-sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid) with the aliphatic nitrogen Lewis bases, hydroxylamine, triethylamine, pyrrolidine, morpholine, N-methylmorpholine and piperazine, viz. hydroxyammonium 3-carboxy-4-hydroxybenzenesulfonate (1), triethylaminium 3-carboxy-4-hydroxybenzenesulfonate (2), pyrrolidinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate (3), morpholinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate (4), N-methylmorpholinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate (5) and piperazine-1,4-diium bis(3-carboxy-4-hydroxybenzenesulfonate) hexahydrate (6) have been determined and their comparative structural features and hydrogen-bonding patterns described. Crystals of 4 are triclinic, space group P-1 while the remainder are monoclinic with space group either P21/c (1 - 3) or P21/n (5, 6). Unit cell dimensions and contents are: for 1, a = 5.0156(3), b = 10.5738(6), c = 18.4785(9) Å, β = 96.412(5)o, Z = 4; for 2, a = 8.4998(4), b = 12.3832(6), c = 15.4875(9) Å, β = 102.411(5)o, Z = 4; for 3, a = 6.8755(2), b = 15.5217(4), c = 12.8335(3) Å, β = 92.074(2)o, Z = 4; for 4, a = 6.8397(2), b = 12.9756(5), c = 15.8216(6) Å, α = 90.833(3), β = 95.949(3), γ = 92.505(3)o, Z = 4; for 5, a = 7.0529(3), b = 13.8487(7), c = 15.6448(6) Å, β = 90.190(6)o, Z = 4; for 6, a = 7.0561(2), b = 15.9311(4), c = 12.2102(3) Å, β = 100.858(3)o, Z = 2. The hydrogen bonding generates structures which are either two-dimensional (2 and 5) or three-dimensional (1, 3, 4 and 6). Compound 6 represents the third reported structure of a salt of 5-sulfosalicylic acid having a dicationic piperazine species.
Resumo:
The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 μA/cm2) achieved at a low applied field (3.50 V/μm) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.
Resumo:
Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 kmph. Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 1012 particles min-1 at idle to 1015 particles km-1 at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the monocyclic heteroaromatic Lewis bases 2-aminopyrimidine, 3-(aminocarboxy) pyridine (nicotinamide) and 4-(aminocarbonyl) pyridine (isonicotinamide), namely 2-aminopyrimidinium 2-carboxy-4,5-dichlorobenzoate C4H6N3+ C8H3Cl2O4- (I), 3-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate C6H7N2O+ C8H3Cl2O4- (II) and the unusual salt adduct 4-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate 2-carboxymethyl-4,5-dichlorobenzoic acid (1/1/1) C6H7N2O+ C8H3Cl2O4-.C9H6Cl2O4 (III) have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen-bonded cyclic bis(cation--anion) units having both R2/2(8) and R2/1(4) N-H...O interactions. In compound (II) the primary N-H...O linked cation--anion units are extended into a two-dimensional sheet structure via amide-carboxyl and amide-carbonyl N-H...O interactions. The structure of (III) reveals the presence of an unusual and unexpected self-synthesized methyl monoester of the acid as an adduct molecule giving one-dimensional hydrogen-bonded chains. In all three structures the hydrogen phthalate anions are
Resumo:
The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.