2 resultados para Neurolinguistics

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Many bilinguals will have had the experience of unintentionally reading something in a language other than the intended one (e.g. MUG to mean mosquito in Dutch rather than a receptacle for a hot drink, as one of the possible intended English meanings), of finding themselves blocked on a word for which many alternatives suggest themselves (but, somewhat annoyingly, not in the right language), of their accent changing when stressed or tired and, occasionally, of starting to speak in a language that is not understood by those around them. These instances where lexical access appears compromised and control over language behavior is reduced hint at the intricate structure of the bilingual lexical architecture and the complexity of the processes by which knowledge is accessed and retrieved. While bilinguals might tend to blame word finding and other language problems on their bilinguality, these difficulties per se are not unique to the bilingual population. However, what is unique, and yet far more common than is appreciated by monolinguals, is the cognitive architecture that subserves bilingual language processing. With bilingualism (and multilingualism) the rule rather than the exception (Grosjean, 1982), this architecture may well be the default structure of the language processing system. As such, it is critical that we understand more fully not only how the processing of more than one language is subserved by the brain, but also how this understanding furthers our knowledge of the cognitive architecture that encapsulates the bilingual mental lexicon. The neurolinguistic approach to bilingualism focuses on determining the manner in which the two (or more) languages are stored in the brain and how they are differentially (or similarly) processed. The underlying assumption is that the acquisition of more than one language requires at the very least a change to or expansion of the existing lexicon, if not the formation of language-specific components, and this is likely to manifest in some way at the physiological level. There are many sources of information, ranging from data on bilingual aphasic patients (Paradis, 1977, 1985, 1997) to lateralization (Vaid, 1983; see Hull & Vaid, 2006, for a review), recordings of event-related potentials (ERPs) (e.g. Ardal et al., 1990; Phillips et al., 2006), and positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies of neurologically intact bilinguals (see Indefrey, 2006; Vaid & Hull, 2002, for reviews). Following the consideration of methodological issues and interpretative limitations that characterize these approaches, the chapter focuses on how the application of these approaches has furthered our understanding of (1) selectivity of bilingual lexical access, (2) distinctions between word types in the bilingual lexicon and (3) control processes that enable language selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objects presented in categorically related contexts are typically named slower than objects presented in unrelated contexts, a phenomenon termed semantic interference. However, not all semantic relationships induce interference. In the present study, we investigated the influence of object part-relations in the blocked cyclic naming paradigm. In Experiment 1 we established that an object's parts do induce a semantic interference effect when named in context compared to unrelated parts (e.g., leaf, root, nut, bark; for tree). In Experiment 2) we replicated the effect during perfusion functional magnetic resonance imaging (fMRI) to identify the cerebral regions involved. The interference effect was associated with significant perfusion signal increases in the hippocampal formation and decreases in the dorsolateral prefrontal cortex. We failed to observe significant perfusion signal changes in the left lateral temporal lobe, a region that shows reliable activity for interference effects induced by categorical relations in the same paradigm and is proposed to mediate lexical-semantic processing. We interpret these results as supporting recent explanations of semantic interference in blocked cyclic naming that implicate working memory mechanisms. However, given the failure to observe significant perfusion signal changes in the left temporal lobe, the results provide only partial support for accounts that assume semantic interference in this paradigm arises solely due to lexical-level processes.