6 resultados para Net optical gain
em Queensland University of Technology - ePrints Archive
Resumo:
To achieve best environmental management practice in Queensland, effort needs to be extended into the private sector. A Regional Landscape Strategy compiled for any substantial new proposal must identify the most promising technique(s) (from an available tool kit of 13) by which a developer (of any type) is more likely to sustain on-site resources while assisting government deliver its future plans in any region of the State. Offsetting may prove to be one of the most effective of these tools. However, policy must address‘offset land mitigation’, whereby the necessary financial incentives are introduced. Practicable methods by which offset sites can be selected, and measurement of their consequent environmental benefit, have now been devised and tested to assist this process.
Resumo:
The process of offsetting land against unavoidable disturbance of development sites in Queensland will benefit from a method that allows the best possible selection to be made of alternative lands. With site selection now advocated through a combination of Regional Ecosystem and Land Capability classifications state-wide, a case study has determined methods of assessing the functional lift – that is, measures of net environmental gain – of such action. Outcomes with potentially high functional lift are determined, that offer promise not only for endangered ecosystems but also for managing adjacent conservation reserves.
Resumo:
The electronic and optical properties of anatase titanium dioxide (TiO2), co-doped by nitrogen (N) and lithium (Li), have been investigated by density functional theory plus Hubbard correction term U, namely DFT+U. It is found that Li-dopants can effectively balance the net charges brought by N-dopants and shift the local state to the top of valence band. Depending on the distribution of dopants, the adsorption edges of TiO2 may be red- or blue-shifted, being consistent with recent experimental observations.
Resumo:
This study presents the effect of iodine doping on optical and surface properties of polyterpenol thin films deposited from non-synthetic precursor by means of plasma polymerisation. Spectroscopic ellipsometry studies showed iodine doping reduced the optical band gap from 2.82 eV to 1.50 eV for pristine and doped samples respectively. Higher levels of doping notably reduced the transparency of films, an issue if material is considered for applications that require high transparency. Contact angle studies demonstrated higher hydrophilicity for films deposited at increased doping levels, results confirmed by XPS Spectroscopy and FTIR. Doping had no significant effect on the surface profile or roughness of the film.