49 resultados para Nephritis, Equine.
em Queensland University of Technology - ePrints Archive
Resumo:
There’s nothing like travel to broaden the mind. As a young man living in Britain during the 1980s I thought I knew about human obesity, but it took a visit to the US to show me what an epidemic looks like. Nowadays I live in Australia, where human obesity is rife. We have plenty of fat horses too (Sillence et al., 2006), but they are noticeable. In fact, it was only recently during a return visit to Britain, that I was finally sold on the concept of an equine obesity epidemic. It seems that in the UK, the fat horse or pony is now so commonplace that it has come to represent the norm in the eyes of many owners. I met clinicians who claim to have forgotten what a fit horse looks like, and heard anecdotes of a responsible owner who kept their animals in a healthy body condition, only to be reported to the RSPCA for ‘cruelty’. Round and shiny have become the order of the day and, as we have learned from the tsunami of human obesity, once a problem reaches a certain scale it can seem unstoppable, despite the attendant risks, costs and consequences.
Resumo:
Articular cartilage defects are common after joint injuries. When left untreated, the biomechanical protective function of cartilage is gradually lost, making the joint more susceptible to further damage, causing progressive loss of joint function and eventually osteoarthritis (OA). In the process of translating promising tissue-engineering cartilage repair approaches from bench to bedside, pre-clinical animal models including mice, rabbits, goats, and horses, are widely used. The equine species is becoming an increasingly popular model for the in vivo evaluation of regenerative orthopaedic approaches. As there is also an increasing body of evidence suggesting that successful lasting tissue reconstruction requires an implant that mimics natural tissue organization, it is imperative that depth-dependent characteristics of equine osteochondral tissue are known, to assess to what extent they resemble those in humans. Therefore, osteochondral cores (4-8 mm) were obtained from the medial and lateral femoral condyles of equine and human donors. Cores were processed for histology and for biochemical quantification of DNA, glycosaminoglycan (GAG) and collagen content. Equine and human osteochondral tissues possess similar geometrical (thickness) and organizational (GAG, collagen and DNA distribution with depth) features. These comparable trends further underscore the validity of the equine model for the evaluation of regenerative approaches for articular cartilage.
Resumo:
We humans are complicated creatures. Despite remarkable intellect, a fearsome ability to push boundaries and superior survival mechanisms, we are at times our own worst enemy. Metabolic syndrome continues to be a premier health problem in developed, and now increasingly in undeveloped, nations. It is spreading across the planet like an infectious disease and is costing us millions. Metabolic disease remains an important focus both for medical research and for governments desperate to ease the burden on already over-taxed health systems. Unlike some previous worldwide health epidemics, obesity-related diseases will require more than a single, silver bullet. A simple vaccine or treatment cannot overcome a lack of education, awareness and in some cases sheer determination; the human element of these diseases. Undeniably, these ‘human elements’ also complicate our ability, as veterinarians, to effectively manage the growing incidence of equine obesity and metabolic disease...
Resumo:
The dermo-epidermal interface that connects the equine distal phalanx to the cornified hoof wall withstands great biomechanical demands, but is also a region where structural failure often ensues as a result of laminitis. The cytoskeleton in this region maintains cell structure and facilitates intercellular adhesion, making it likely to be involved in laminitis pathogenesis, although it is poorly characterized in the equine hoof lamellae. The objective of the present study was to identify and quantify the cytoskeletal proteins present in the epidermal and dermal lamellae of the equine hoof by proteomic techniques. Protein was extracted from the mid-dorsal epidermal and dermal lamellae from the front feet of 5 Standardbred geldings and 1 Thoroughbred stallion. Mass spectrometry-based spectral counting techniques, PAGE, and immunoblotting were used to identify and quantify cytoskeletal proteins, and indirect immunofluorescence was used for cellular localization of K14 and K124 (where K refers to keratin). Proteins identified by spectral counting analysis included 3 actin microfilament proteins; 30 keratin proteins along with vimentin, desmin, peripherin, internexin, and 2 lamin intermediate filament proteins; and 6 tubulin microtubule proteins. Two novel keratins, K42 and K124, were identified as the most abundant cytoskeletal proteins (22.0 ± 3.2% and 23.3 ± 4.2% of cytoskeletal proteins, respectively) in equine hoof lamellae. Immunoreactivity to K14 was localized to the basal cell layer, and that to K124 was localized to basal and suprabasal cells in the secondary epidermal lamellae. Abundant proteins K124, K42, K14, K5, and α1-actin were identified on 1- and 2-dimensional polyacrylamide gels and aligned with the results of previous studies. Results of the present study provide the first comprehensive analysis of cytoskeletal proteins present in the equine lamellae by using mass spectrometry-based techniques for protein quantification and identification.
Resumo:
Reasons for performing the study As growth hormone increases lean body mass, it could be a therapy for obese horses. However, growth hormone use induces hyperinsulinaemia in some species, so further investigation is warranted. Objectives To investigate the effects of feeding, exercise and growth hormone therapy on basal insulin concentrations in healthy horses. Study design In vivo experimental study. Methods Blood samples were obtained every 30 min from 12 geldings over 24 h, to establish basal serum insulin concentrations, before they underwent a 3-week exercise programme. Horses were allocated into 2 groups and exercised for another 4 weeks. Group A received daily i.m. injections of recombinant equine growth hormone; 5 mg/day for 5 days, then 12.5 mg/day for 16 days. Blood samples were taken daily before feeding. Insulin vs. time area under curve of Groups A and B were compared using a Student's unpaired t test. Results Horses demonstrated insulin peaks within 2 h of feeding of 577 ± 108.3 pmol/l at 09.30 h and 342.4 ± 75.7 pmol/l at 17.30 h, despite receiving the same meal. The nadir was between midnight and 07.30 h. Exercise had no effect on basal insulin concentrations prior to equine growth hormone administrations. The equine growth hormone injections increased serum insulin concentrations (P = 0.01) within Group A, from 44.4 ± 15.3 pmol/l initially to 320.9 ± 238.2 pmol/l by Day 12. Exogenous growth hormone caused variable hyperinsulinaemia, which was alleviated once equine growth hormone administration ceased. Conclusions Single serum samples taken prior to the morning meal provide basal insulin concentrations. Exercise did not change basal insulin concentrations. However, equine growth hormone injections increased basal insulin concentrations, which were not ameliorated by exercise. Potential relevance This therapy is not recommended to address obesity in insulin-resistant equids.
Resumo:
REASONS FOR PERFORMING STUDY An increased incidence of metabolic disease in horses has led to heightened recognition of the pathological consequences of insulin resistance (IR). Laminitis, failure of the weight-bearing digital lamellae, is an important consequence. Altered trafficking of specialised glucose transporters (GLUTs) responsible for glucose uptake, are central to the dysregulation of glucose metabolism and may play a role in laminitis pathophysiology. OBJECTIVES We hypothesised that prolonged hyperinsulinaemia alters the regulation of glucose transport in insulin-sensitive tissue and digital lamellae. Our objectives were to compare the relative protein expression of major GLUT isoforms in striated muscle and digital lamellae in healthy horses and during hyperinsulinaemia. STUDY DESIGN Randomised, controlled study. METHODS Prolonged hyperinsulinaemia and lamellar damage were induced by a prolonged-euglycaemic hyperinsulinaemic clamp (p-EHC) or a prolonged-glucose infusion (p-GI) and results were compared to electrolyte-treated controls. GLUT protein expression was examined with immunoblotting. RESULTS Lamellar tissue contained more GLUT1 protein than skeletal muscle (p = 0.002) and less GLUT4 than the heart (p = 0.037). During marked hyperinsulinaemia and acute laminitis (induced by the p-EHC), GLUT1 protein expression was decreased in skeletal muscle (p = 0.029) but unchanged in the lamellae, while novel GLUTs (8; 12) were increased in the lamellae (p = 0.03), but not skeletal muscle. However, moderate hyperinsulinaemia and subclinical laminitis (induced by the p-GI) did not cause differential GLUT protein expression in the lamellae vs. control horses. CONCLUSIONS The results suggest that lamellar tissue functions independently of insulin and that IR may not be an essential component of laminitis aetiology. Marked differences in GLUT expression exist between insulin-sensitive and insulin-independent tissues during metabolic dysfunction in horses. The different expression profiles of novel GLUTs during acute and subclinical laminitis may be important to disease pathophysiology and require further investigation.
Resumo:
Equine metabolic syndrome is characterized by obesity and insulin resistance (IR). Currently, there is no effective pharmacological treatment for this insidious disease. Glucose uptake is mediated by a family of glucose transporters (GLUT), and is regulated by insulin-dependent and -independent pathways, including 5-AMP-activated protein kinase (AMPK). Importantly, the activation of AMPK, by 5-aminoimidazole- 4-carboxamide-1-D-ribofuranoside (AICAR) stimulates glucose uptake in both healthy and diabetic humans. However, whether AICAR promotes glucose uptake in horses has not been established. It is hypothesized that AICAR administration would enhance glucose transport in equine skeletal muscle through AMPK activation. In this study, the effect of an intravenous AICAR infusion on blood glucose and insulin concentrations, as well as on GLUT expression and AMPK activation in equine skeletal muscle (quantified by Western blotting) was examined. Upon administration, plasma AICAR rapidly reached peak concentration. Treatment with AICAR resulted in a decrease (P < 0.05) in blood glucose and an increase (P < 0.05) in insulin concentration without a change in lactate concentration. The ratio of phosphorylated to total AMPK was increased (P < 0.05) in skeletal muscle. While GLUT4 and GLUT1 protein expression remained unchanged, GLUT8 was increased (P < 0.05) following AICAR treatment. Up-regulation of GLUT8 protein expression by AICAR suggests that this novel GLUT isoform plays an important role in equine muscle glucose transport. In addition, the data suggest that AMPK activation enhances pancreatic insulin secretion. Collectively, the findings suggest that AICAR acutely promotes muscle glucose uptake in healthy horses and thus its therapeutic potential for managing IR requires investigation.
Resumo:
Background In 2011, a variant of West Nile virus Kunjin strain (WNVKUN) caused an unprecedented epidemic of neurological disease in horses in southeast Australia, resulting in almost 1,000 cases and a 9% fatality rate. We investigated whether increased fitness of the virus in the primary vector, Culex annulirostris, and another potential vector, Culex australicus, contributed to the widespread nature of the outbreak. Methods Mosquitoes were exposed to infectious blood meals containing either the virus strain responsible for the outbreak, designated WNVKUN2011, or WNVKUN2009, a strain of low virulence that is typical of historical strains of this virus. WNVKUN infection in mosquito samples was detected using a fixed cell culture enzyme immunoassay and a WNVKUN- specific monoclonal antibody. Probit analysis was used to determine mosquito susceptibility to infection. Infection, dissemination and transmission rates for selected days post-exposure were compared using Fisher’s exact test. Virus titers in bodies and saliva expectorates were compared using t-tests. Results There were few significant differences between the two virus strains in the susceptibility of Cx. annulirostris to infection, the kinetics of virus replication and the ability of this mosquito species to transmit either strain. Both strains were transmitted by Cx. annulirostris for the first time on day 5 post-exposure. The highest transmission rates (proportion of mosquitoes with virus detected in saliva) observed were 68% for WNVKUN2011 on day 12 and 72% for WNVKUN2009 on day 14. On days 12 and 14 post-exposure, significantly more WNVKUN2011 than WNVKUN2009 was expectorated by infected mosquitoes. Infection, dissemination and transmission rates of the two strains were not significantly different in Culex australicus. However, transmission rates and the amount of virus expectorated were significantly lower in Cx. australicus than Cx. annulirostris. Conclusions The higher amount of WNVKUN2011 expectorated by infected mosquitoes may be an indication that this virus strain is transmitted more efficiently by Cx. annulirostris compared to other WNVKUN strains. Combined with other factors, such as a convergence of abundant mosquito and wading bird populations, and mammalian and avian feeding behaviour by Cx. annulirostris, this may have contributed to the scale of the 2011 equine epidemic.
Resumo:
Compared to other species insulin dysregulation in equids is poorly understood. Hyperinsulinemia causes laminitis, a significant and often lethal disease affecting the pedal bone/hoof wall attachment site. Until recently, hyperinsulinemia has been considered a counter-regulatory response to insulin resistance (IR), but there is growing evidence to support a gastrointestinal etiology. Incretin hormones released from the proximal intestine, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide, augment insulin secretion in several species, but require investigation in horses. This study investigated peripheral and gut-derived factors impacting insulin secretion by comparing the response to intravenous (IV) and oral D-glucose. Oral and IV tests were performed in 22 ponies previously shown to be insulin dysregulated, of which only 15 were classified as IR (IV test). In a more detailed study, nine different ponies received four treatments: D-glucose orally, D-glucose IV, oats and Workhorse-mix. Insulin, glucose and incretin concentrations were measured before and after each treatment. All nine ponies showed similar IV responses, but five were markedly hyper-responsive to oral D-glucose and four were not. Insulin responsiveness to oral D-glucose was strongly associated with blood glucose concentrations and oral glucose bioavailability, presumably driven by glucose absorption/distribution, as there was no difference in glucose clearance rates. Insulin was also positively associated with active GLP-1 following D-glucose and grain. This study has confirmed a functional enteroinsular axis in ponies which likely contributes to insulin dysregulation that may predispose them to laminitis. Further, IV tests for IR are not reliable predictors of the oral response to dietary non-structural carbohydrate.