150 resultados para Negative Binomial Regression Model (NBRM)

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To examine the effects of extremely cold and hot temperatures on ischaemic heart disease (IHD) mortality in five cities (Beijing, Tianjin, Shanghai, Wuhan and Guangzhou) in China; and to examine the time relationships between cold and hot temperatures and IHD mortality for each city. Design: A negative binomial regression model combined with a distributed lag non-linear model was used to examine city-specific temperature effects on IHD mortality up to 20 lag days. A meta-analysis was used to pool the cold effects and hot effects across the five cities. Patients: 16 559 IHD deaths were monitored by a sentinel surveillance system in five cities during 2004–2008. Results: The relationships between temperature and IHD mortality were non-linear in all five cities. The minimum-mortality temperatures in northern cities were lower than in southern cities. In Beijing, Tianjin and Guangzhou, the effects of extremely cold temperatures were delayed, while Shanghai and Wuhan had immediate cold effects. The effects of extremely hot temperatures appeared immediately in all the cities except Wuhan. Meta-analysis showed that IHD mortality increased 48% at the 1st percentile of temperature (extremely cold temperature) compared with the 10th percentile, while IHD mortality increased 18% at the 99th percentile of temperature (extremely hot temperature) compared with the 90th percentile. Conclusions: Results indicate that both extremely cold and hot temperatures increase IHD mortality in China. Each city has its characteristics of heat effects on IHD mortality. The policy for response to climate change should consider local climate–IHD mortality relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary aim of this descriptive exploration of scientists’ life cycle award patterns is to evaluate whether awards breed further awards and identify researcher experiences after reception of the Nobel Prize. To achieve this goal, we collected data on the number of awards received each year for 50 years before and after Nobel Prize reception by all 1901–2000 Nobel laureates in physics, chemistry, and medicine or physiology. Our results indicate an increasing rate of awards before Nobel reception, reaching the summit precisely in the year of the Nobel Prize. After this pinnacle year, awards drop sharply. This result is confirmed by separate analyses of three different disciplines and by a random-effects negative binomial regression model. Such an effect, however, does not emerge for more recent Nobel laureates (1971–2000). In addition, Nobelists in medicine or physiology generate more awards shortly before and after prize reception, whereas laureates in chemistry attract more awards as time progresses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hot spot identification (HSID) aims to identify potential sites—roadway segments, intersections, crosswalks, interchanges, ramps, etc.—with disproportionately high crash risk relative to similar sites. An inefficient HSID methodology might result in either identifying a safe site as high risk (false positive) or a high risk site as safe (false negative), and consequently lead to the misuse the available public funds, to poor investment decisions, and to inefficient risk management practice. Current HSID methods suffer from issues like underreporting of minor injury and property damage only (PDO) crashes, challenges of accounting for crash severity into the methodology, and selection of a proper safety performance function to model crash data that is often heavily skewed by a preponderance of zeros. Addressing these challenges, this paper proposes a combination of a PDO equivalency calculation and quantile regression technique to identify hot spots in a transportation network. In particular, issues related to underreporting and crash severity are tackled by incorporating equivalent PDO crashes, whilst the concerns related to the non-count nature of equivalent PDO crashes and the skewness of crash data are addressed by the non-parametric quantile regression technique. The proposed method identifies covariate effects on various quantiles of a population, rather than the population mean like most methods in practice, which more closely corresponds with how black spots are identified in practice. The proposed methodology is illustrated using rural road segment data from Korea and compared against the traditional EB method with negative binomial regression. Application of a quantile regression model on equivalent PDO crashes enables identification of a set of high-risk sites that reflect the true safety costs to the society, simultaneously reduces the influence of under-reported PDO and minor injury crashes, and overcomes the limitation of traditional NB model in dealing with preponderance of zeros problem or right skewed dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the impact of glaucomatous visual impairment on postural sway and falls among older adults.Methods: The sample comprised 72 community-dwelling older adults with open-angle glaucoma, aged 74.0 5.8 years (range 62 to 90 years). Measures of visual function included binocular visual acuity (high-contrast), binocular contrast sensitivity (Pelli- Robson) and binocular visual fields (merged monocular HFA 24-2 SITA-Std). Postural stability was assessed under four conditions: eyes open and closed, on a firm and on a foam surface. Falls were monitored for six months with prospective falls diaries. Regression models, adjusting for age and gender, examined the association between vision measures and postural stability (linear regression) and the number of falls (negative binomial regression). Results: Greater visual field loss was significantly associated with poorer postural stability with eyes open, both on firm (r = 0.34, p < 0.01) and foam (r = 0.45, p < 0.001) surfaces. Eighteen (25 per cent) participants experienced at least one fall: 12 (17 per cent) participants fell only once and six (eight per cent) participants fell two or more times (up to five falls). Visual field loss was significantly associated with falling; the rate of falls doubled for every 10 dB reduction in field sensitivity (rate ratio = 1.08, 95% CI = 1.02–1.13). Importantly, in a model comprising upper and lower field sensitivity, only lower field loss was significantly associated with the number of falls (rate ratio = 1.17, 95% CI = 1.04–1.33). Conclusions: Binocular visual field loss was significantly associated with postural instability and falls among older adults with glaucoma. These findings provide valuable directions for developing falls risk assessment and falls prevention strategies for this population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large trucks are involved in a disproportionately small fraction of the total crashes but a disproportionately large fraction of fatal crashes. Large truck crashes often result in significant congestion due to their large physical dimensions and from difficulties in clearing crash scenes. Consequently, preventing large truck crashes is critical to improving highway safety and operations. This study identifies high risk sites (hot spots) for large truck crashes in Arizona and examines potential risk factors related to the design and operation of the high risk sites. High risk sites were identified using both state of the practice methods (accident reduction potential using negative binomial regression with long crash histories) and a newly proposed method using Property Damage Only Equivalents (PDOE). The hot spots identified via the count model generally exhibited low fatalities and major injuries but large minor injuries and PDOs, while the opposite trend was observed using the PDOE methodology. The hot spots based on the count model exhibited large AADTs, whereas those based on the PDOE showed relatively small AADTs but large fractions of trucks and high posted speed limits. Documented site investigations of hot spots revealed numerous potential risk factors, including weaving activities near freeway junctions and ramps, absence of acceleration lanes near on-ramps, small shoulders to accommodate large trucks, narrow lane widths, inadequate signage, and poor lighting conditions within a tunnel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To examine the visual predictors of falls and injurious falls among older adults with glaucoma. METHODS: Prospective falls data were collected for 71 community-dwelling adults with primary open-angle glaucoma, mean age 73.9 ± 5.7 years, for one year using monthly falls diaries. Baseline assessment of central visual function included high-contrast visual acuity and Pelli-Robson contrast sensitivity. Binocular integrated visual fields were derived from monocular Humphrey Field Analyser plots. Rate ratios (RR) for falls and injurious falls with 95% confidence intervals (CIs) were based on negative binomial regression models. RESULTS: During the one year follow-up, 31 (44%) participants experienced at least one fall and 22 (31%) experienced falls that resulted in an injury. Greater visual impairment was associated with increased falls rate, independent of age and gender. In a multivariate model, more extensive field loss in the inferior region was associated with higher rate of falls (RR 1.57, 95%CI 1.06, 2.32) and falls with injury (RR 1.80, 95%CI 1.12, 2.98), adjusted for all other vision measures and potential confounding factors. Visual acuity, contrast sensitivity, and superior field loss were not associated with the rate of falls; topical beta-blocker use was also not associated with increased falls risk. CONCLUSIONS: Falls are common among older adults with glaucoma and occur more frequently in those with greater visual impairment, particularly in the inferior field region. This finding highlights the importance of the inferior visual field region in falls risk and assists in identifying older adults with glaucoma at risk of future falls, for whom potential interventions should be targeted. KEY WORDS: glaucoma, visual field, visual impairment, falls, injury

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Readily accepted knowledge regarding crash causation is consistently omitted from efforts to model and subsequently understand motor vehicle crash occurrence and their contributing factors. For instance, distracted and impaired driving accounts for a significant proportion of crash occurrence, yet is rarely modeled explicitly. In addition, spatially allocated influences such as local law enforcement efforts, proximity to bars and schools, and roadside chronic distractions (advertising, pedestrians, etc.) play a role in contributing to crash occurrence and yet are routinely absent from crash models. By and large, these well-established omitted effects are simply assumed to contribute to model error, with predominant focus on modeling the engineering and operational effects of transportation facilities (e.g. AADT, number of lanes, speed limits, width of lanes, etc.) The typical analytical approach—with a variety of statistical enhancements—has been to model crashes that occur at system locations as negative binomial (NB) distributed events that arise from a singular, underlying crash generating process. These models and their statistical kin dominate the literature; however, it is argued in this paper that these models fail to capture the underlying complexity of motor vehicle crash causes, and thus thwart deeper insights regarding crash causation and prevention. This paper first describes hypothetical scenarios that collectively illustrate why current models mislead highway safety researchers and engineers. It is argued that current model shortcomings are significant, and will lead to poor decision-making. Exploiting our current state of knowledge of crash causation, crash counts are postulated to arise from three processes: observed network features, unobserved spatial effects, and ‘apparent’ random influences that reflect largely behavioral influences of drivers. It is argued; furthermore, that these three processes in theory can be modeled separately to gain deeper insight into crash causes, and that the model represents a more realistic depiction of reality than the state of practice NB regression. An admittedly imperfect empirical model that mixes three independent crash occurrence processes is shown to outperform the classical NB model. The questioning of current modeling assumptions and implications of the latent mixture model to current practice are the most important contributions of this paper, with an initial but rather vulnerable attempt to model the latent mixtures as a secondary contribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure assessment in epidemiological studies. Most LUR models are developed for single cities, which places limitations on their applicability to other locations. We sought to develop a model to predict nitrogen dioxide (NO2) concentrations with national coverage of Australia by using satellite observations of tropospheric NO2 columns combined with other predictor variables. We used a generalised estimating equation (GEE) model to predict annual and monthly average ambient NO2 concentrations measured by a national monitoring network from 2006 through 2011. The best annual model explained 81% of spatial variation in NO2 (absolute RMS error=1.4 ppb), while the best monthly model explained 76% (absolute RMS error=1.9 ppb). We applied our models to predict NO2 concentrations at the ~350,000 census mesh blocks across the country (a mesh block is the smallest spatial unit in the Australian census). National population-weighted average concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We found that a simple approach using tropospheric NO2 column data yielded models with slightly better predictive ability than those produced using a more involved approach that required simulation of surface-to-column ratios. The models were capable of capturing within-urban variability in NO2, and offer the ability to estimate ambient NO2 concentrations at monthly and annual time scales across Australia from 2006–2011. We are making our model predictions freely available for research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large multisite efforts (e.g., the ENIGMA Consortium), have shown that neuroimaging traits including tract integrity (from DTI fractional anisotropy, FA) and subcortical volumes (from T1-weighted scans) are highly heritable and promising phenotypes for discovering genetic variants associated with brain structure. However, genetic correlations (rg) among measures from these different modalities for mapping the human genome to the brain remain unknown. Discovering these correlations can help map genetic and neuroanatomical pathways implicated in development and inherited risk for disease. We use structural equation models and a twin design to find rg between pairs of phenotypes extracted from DTI and MRI scans. When controlling for intracranial volume, the caudate as well as related measures from the limbic system - hippocampal volume - showed high rg with the cingulum FA. Using an unrelated sample and a Seemingly Unrelated Regression model for bivariate analysis of this connection, we show that a multivariate GWAS approach may be more promising for genetic discovery than a univariate approach applied to each trait separately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic-related air pollution has been associated with a wide range of adverse health effects. One component of traffic emissions that has been receiving increasing attention is ultrafine particles(UFP, < 100 nm), which are of concern to human health due to their small diameters. Vehicles are the dominant source of UFP in urban environments. Small-scale variation in ultrafine particle number concentration (PNC) can be attributed to local changes in land use and road abundance. UFPs are also formed as a result of particle formation events. Modelling the spatial patterns in PNC is integral to understanding human UFP exposure and also provides insight into particle formation mechanisms that contribute to air pollution in urban environments. Land-use regression (LUR) is a technique that can use to improve the prediction of air pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used geographic information systems and a spatial analysis approach to explore the pattern of Ross River virus (RRV) incidence in Brisbane, Australia. Climate, vegetation and socioeconomic data in 2001 were obtained from the Australian Bureau of Meteorology, the Brisbane City Council and the Australian Bureau of Statistics, respectively. Information on the RRV cases was obtained from the Queensland Department of Health. Spatial and multiple negative binomial regression models were used to identify the socioeconomic and environmental determinants of RRV transmission. The results show that RRV activity was primarily concentrated in the northeastern, northwestern, and southeastern regions in Brisbane. Multiple negative binomial regression models showed that the spatial pattern of RRV disease in Brisbane seemed to be determined by a combination of local ecologic, socioeconomic, and environmental factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Dengue fever (DF) outbreaks often arise from imported DF cases in Cairns, Australia. Few studies have incorporated imported DF cases in the estimation of the relationship between weather variability and incidence of autochthonous DF. The study aimed to examine the impact of weather variability on autochthonous DF infection after accounting for imported DF cases and then to explore the possibility of developing an empirical forecast system. METHODOLOGY/PRINCIPAL FINDS Data on weather variables, notified DF cases (including those acquired locally and overseas), and population size in Cairns were supplied by the Australian Bureau of Meteorology, Queensland Health, and Australian Bureau of Statistics. A time-series negative-binomial hurdle model was used to assess the effects of imported DF cases and weather variability on autochthonous DF incidence. Our results showed that monthly autochthonous DF incidences were significantly associated with monthly imported DF cases (Relative Risk (RR):1.52; 95% confidence interval (CI): 1.01-2.28), monthly minimum temperature ((o)C) (RR: 2.28; 95% CI: 1.77-2.93), monthly relative humidity (%) (RR: 1.21; 95% CI: 1.06-1.37), monthly rainfall (mm) (RR: 0.50; 95% CI: 0.31-0.81) and monthly standard deviation of daily relative humidity (%) (RR: 1.27; 95% CI: 1.08-1.50). In the zero hurdle component, the occurrence of monthly autochthonous DF cases was significantly associated with monthly minimum temperature (Odds Ratio (OR): 1.64; 95% CI: 1.01-2.67). CONCLUSIONS/SIGNIFICANCE Our research suggested that incidences of monthly autochthonous DF were strongly positively associated with monthly imported DF cases, local minimum temperature and inter-month relative humidity variability in Cairns. Moreover, DF outbreak in Cairns was driven by imported DF cases only under favourable seasons and weather conditions in the study.