442 resultados para Natural infection

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Symptoms of barley yellow dwarf (BYD) have been observed on cereals in nearly all countries of West Asia and North Africa. Its incidence. however, has varied during the last 15 years. Observations from field surveys are summarized. Since symptoms of barley yellow dwarf virus (BYDV) are of low diagnostic value, especially in wheat (Triticum aestivum L.), more precise qualitative and quantitative detection was derived by vector transmission and serology. In 1985 and 1986. preliminary surveys by enzyme-linked immunosorbent assay (ELlS A) indicated that BYDV incidence in the regions surveyed in Syria, Morocco, and Tunisia was around 7. 22. and 24%. respectively. By vector transmission PAV-, RPV-, and RMV-like isolates ofBYDV were identified in Morocco and the PAV-like isolate in Syria. By serology PAV-like isolates were identified in Ethiopia, Lebanon. Morocco. Syria. and Tunisia. and MA V-like isolates were identified from Morocco and Tunisia. The PAV-like type was the most common in all countries surveyed. Screening for BYDV resistance by natural infection has been carried out in a number of countries of the region during the last few years. Screening for resistance by aphid inoculation was initiated in Syria in 1986 at the International Center for Agricultural Research in the Dry Areas (ICARDA). Such screening is expected to follow in other countries of the region soon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlamydial infections represent a major threat to the long-term survival of the koala and a successful vaccine would provide a valuable management tool. Vaccination however has the potential to enhance inflammatory disease in animals exposed to a natural infection prior to vaccination, a finding in early human and primate trials of whole cell vaccines to prevent trachoma. In the present study, we vaccinated both healthy koalas as well as clinically diseased koalas with a multi-subunit vaccine consisting of Chlamydia pecorum MOMP and NrdB mixed with immune stimulating complex as adjuvant. Following vaccination, there was no increase in inflammatory pathological changes in animals previously infected with Chlamydia. Strong antibody (including neutralizing antibodies) and lymphocyte proliferation responses were recorded in all vaccinated koalas, both healthy and clinically diseased. Vaccine induced antibodies specific for both vaccine antigens were observed not only in plasma but also in ocular secretions. Our data shows that an experimental chlamydial vaccine is safe to use in previously infected koalas, in that it does not worsen infection-associated lesions. Furthermore, the prototype vaccine is effective, as demonstrated by strong levels of neutralizing antibody and lymphocyte proliferation responses in both healthy and clinically diseased koalas. Collectively, this work illustrates the feasibility of developing a safe and effective Chlamydia vaccine as a tool for management of disease in wild koalas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ross River virus is a mosquito-borne alphavirus that causes approximately 5000 cases of epidemic polyarthritis in Australia each year and has direct medical-associated costs of approximately US$15 million annually. While mosquito control programs are able, at best, to contain rather than prevent this disease, natural infection with Ross River virus confers lifelong protection against subsequent clinical infection. A killed-virus vaccine has been developed, which is in Phase III clinical trials. Analyses of intra-host genetic diversity and of long-term evolutionary changes in Ross River virus populations suggest that antigenic variation is unlikely to pose a threat to the efficacy of this vaccine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The predicted secondary structure of sub-genomic RNA in dengue virus defective interfering (D.I.) particles from patients, or generated in vitro, resembled that of the 3′ and 5′ regions of wild type dengue virus (DENV) genomes. While these structures in the sub-genomic RNA were found to be essential for its replication, their nucleotide sequences were not, so long as any new sequences maintained wild type RNA secondary structure. These observations suggested that these sub-genomic fragments of RNA from dengue viruses were replicated in the same manner as the full length genomes of their wild type, “helper”, viruses and that they probably represent the smallest fragments of DENV RNA that can be replicated during a natural infection. While D.I. particles containing sub-genomic RNA are completely parasitic, the relationship between wild type and D.I. DENV may be symbiotic, with the D.I. particles enhancing the transmission of infectious DENV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interferon gamma (IFNγ) is a key Th1 cytokine, with a principal role in the immune response against intracellular organisms such as Chlamydia. Along with being responsible for significant morbidity in human populations, Chlamydia is also responsible for wide spread infection and disease in many animal hosts, with reports that many Australian koala subpopulations are endemically infected. An understanding of the role played by IFNγ in koala chlamydial diseases is important for the establishment of better prophylactic and therapeutic approaches against chlamydial infection in this host. A limited number of IFNγ sequences have been published from marsupials and no immune reagents to measure expression have been developed. Through preliminary analysis of the koala transcriptome, we have identified the full coding sequence of the koala IFNγ gene. Transcripts were identified in spleen and lymph node tissue samples. Phylogenetic analysis demonstrated that koala IFNγ is closely related to other marsupial IFNγ sequences and more distantly related to eutherian mammals. To begin to characterise the role of this important cytokine in the koala's response to chlamydial infection, we developed a quantitative real time PCR assay and applied it to a small cohort of koalas with and without active chlamydial disease, revealing significant differences in expression patterns between the groups. Description of the IFNγ sequence from the koala will not only assist in understanding this species' response to its most important pathogen but will also provide further insight into the evolution of the marsupial immune system

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chlamydial infection in koalas is common across the east coast of Australia and causes significant morbidity, infertility and mortality. An effective vaccine to prevent the adverse consequences of chlamydial infections in koalas (particularly blindness and infertility in females) would provide an important management tool to prevent further population decline of this species. An important step towards developing a vaccine in koalas is to understand the host immune response to chlamydial infection. In this study, we used the Pepscan methodology to identify B cell epitopes across the Major Outer Membrane Protein (MOMP) of four C. pecorum strains/genotypes that are recognized, either following (a) natural live infection or (b) administration of a recombinant MOMP vaccine. Plasma antibodies from the koalas naturally infected with a C. pecorum G genotype strain recognised the epitopes located in the variable domain (VD) four of MOMP G and also VD4 of MOMP H. By comparison, plasma antibodies from an animal infected with a C. pecorum F genotype strain recognised epitopes in VD1, 2 and 4 of MOMP F, but not from other genotype MOMPs. When Chlamydia-free koalas were immunised with recombinant MOMP protein they produced antibodies not only against epitopes in the VDs but also in conserved domains of MOMP. Naturally infected koalas immunised with recombinant MOMP protein also produced antibodies against epitopes in the conserved domains. This work paves the way for further refinement of a MOMP-based Chlamydia vaccine that will offer wide cross-protection against the variety of chlamydial infections circulating in wild koala populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 'open window' theory is characterised by short term suppression of the immune system following an acute bout of endurance exercise. This window of opportunity may allow for an increase in susceptibility to upper respiratory illness (URI). Many studies have indicated a decrease in immune function in response to exercise. However, many studies do not indicate changes in immune function past 2 hours after the completion of exercise, consequently failing to determine whether these immune cells numbers, or importantly their function, return to resting levels before the start of another bout of exercise. Ten male 'A' grade cyclists (age 24.2 +/- 5.3 years; body mass 73.8 +/- 6.5 kg; VO(2peak) 65.9 +/- 7.1 mL.kg(-1).min(-1)) exercised for two hours at 90% of their second ventilatory threshold. Blood samples were collected pre-, immediately post-, 2 hours, 4 hours, 6 hours, 8 hours, and 24 hours post-exercise. Immune variables examined included total leukocyte counts, neutrophil function (oxidative burst and phagocytic function), lymphocyte subset counts (CD4(+), CD8(+), and CD16(+)/56(+)), natural killer cell activity (NKCA), and NK phenotypes (CD56(dim)CD16(+), and CD56(bright)CD16(-)). There was a significant increase in total lymphocyte numbers from pre-, to immediately post-exercise (p<0.01), followed by a significant decrease at 2 hours post-exercise (p<0.001). CD4(+) T-cell counts significantly increased from pre-exercise, to 4 hours post- (p<0.05), and 6 hours post-exercise (p<0.01). However, NK (CD16(+)/56(+)) cell numbers decreased significantly from pre-exercise to 4 h post-exercise (p<0.05), to 6 h post-exercise (p<0.05), and to 8 h post-exercise (p<0.01). In contrast, CD56(bright)CD16- NK cell counts significantly increased from pre-exercise to immediately post-exercise (p<0.01). Neutrophil oxidative burst activity did not significantly change in response to exercise, while neutrophil cell counts significantly increased from pre-exercise, to immediately post-exercise (p<0.05), and 2 hours post-exercise (p<0.01), and remained significantly above pre-exercise levels to 8 hours post-exercise (p<0.01). Neutrophil phagocytic function significantly decreased from 2 hours post-exercise, to 6 hours post- (p<0.05), and 24 hours post-exercise (p<0.05). Finally, eosinophil cell counts significantly increased from 2 hours post to 6 hours post- (p<0.05), and 8 hours post-exercise (p<0.05). This is the first study to show changes in immunological variables up to 8 hours post-exercise, including significant NK cell suppression, NK cell phenotype changes, a significant increase in total lymphocyte counts, and a significant increase in eosinophil cell counts all at 8 hours post-exercise. Suppression of total lymphocyte counts, NK cell counts and neutrophil phagocytic function following exercise may be important in the increased rate of URI in response to regular intense endurance training.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlamydia pneumoniae commonly causes respiratory tract infections in children, and epidemiological investigations strongly link infection to the pathogenesis of asthma. The immune system in early life is immature and may not respond appropriately to pathogens. Toll-like receptor (TLR)2 and 4 are regarded as the primary pattern recognition receptors that sense bacteria, however their contribution to innate and adaptive immunity in early life remains poorly defined. We investigated the role of TLR2 and 4 in the induction of immune responses to Chlamydia muridarum respiratory infection, in neonatal wild-type (Wt) or TLR2-deficient (−/−), 4−/− or 2/4−/− BALB/c mice. Wt mice had moderate disease and infection. TLR2−/− mice had more severe disease and more intense and prolonged infection compared to other groups. TLR4−/− mice were asymptomatic. TLR2/4−/− mice had severe early disease and persistent infection, which resolved thereafter consistent with the absence of symptoms in TLR4−/− mice. Wt mice mounted robust innate and adaptive responses with an influx of natural killer (NK) cells, neutrophils, myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells, and activated CD4+ and CD8+ T-cells into the lungs. Wt mice also had effective production of interferon (IFN)γ in the lymph nodes and lung, and proliferation of lymph node T-cells. TLR2−/− mice had more intense and persistent innate (particularly neutrophil) and adaptive cell responses and IL-17 expression in the lung, however IFNγ responses and T-cell proliferation were reduced. TLR2/4−/− mice had reduced innate and adaptive responses. Most importantly, neutrophil phagocytosis was impaired in the absence of TLR2. Thus, TLR2 expression, particularly on neutrophils, is required for effective control of Chlamydia respiratory infection in early life. Loss of control of infection leads to enhanced but ineffective TLR4-mediated inflammatory responses that prolong disease symptoms. This indicates that TLR2 agonists may be beneficial in the treatment of early life Chlamydia infections and associated diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-17 is believed to be important for protection against extracellular pathogens, where clearance is dependent on neutrophil recruitment and local activation of epithelial cell defences. However, the role of IL-17 in protection against intracellular pathogens such as Chlamydia is less clear. We have compared (i) the course of natural genital tract C. muridarum infection, (ii) the development of oviduct pathology and (iii) the development of vaccine-induced immunity against infection in wild type (WT) BALB/c and IL-17 knockout mice (IL-17-/-) to determine if IL-17-mediated immunity is implicated in the development of infection-induced pathology and/or protection. Both the magnitude and duration of genital infection was significantly reduced in IL-17-/- mice compared to BALB/c. Similarly, hydrosalpinx was also greatly reduced in IL-17-/- mice and this correlated with reduced neutrophil and macrophage infiltration of oviduct tissues. Matrix metalloproteinase (MMP) 9 and MMP2 were increased in WT oviducts compared to IL-17-/- animals at day 7 post-infection. In contrast, oviducts from IL-17-/- mice contained higher MMP9 and MMP2 at day 21. Infection also elicited higher levels of Chlamydia-neutralizing antibody in serum of IL-17-/- mice than WT mice. Following intranasal immunization with C. muridarum Major Outer Membrane Protein (MOMP) and cholera toxin plus CpG adjuvants, significantly higher levels of chlamydial MOMP-specific IgG and IgA were found in serum and vaginal washes of IL-17-/- mice. T cell proliferation and IFNγ production by splenocytes was greater in WT animals following in vitro re-stimulation, however vaccination was only effective at reducing infection in WT, not IL-17-/- mice. Intranasal or transcutaneous immunization protected WT but not IL-17-/- mice against hydrosalpinx development. Our data show that in the absence of IL-17, the severity of C. muridarum genital infection and associated oviduct pathology are significantly attenuated, however neither infection or pathology can be reduced further by vaccination protocols that effectively protect WT mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indoor air quality is a critical factor in the classroom due to high people concentration in a unique space. Indoor air pollutant might increase the chance of both long and short-term health problems among students and staff, reduce the productivity of teachers and degrade the student’s learning environment and comfort. Adequate air distribution strategies may reduce risk of infection in classroom. So, the purpose of air distribution systems in a classroom is not only to maximize conditions for thermal comfort, but also to remove indoor contaminants. Natural ventilation has the potential to play a significant role in achieving improvements in IAQ. The present study compares the risk of airborne infection between Natural Ventilation (opening windows and doors) and a Split-System Air Conditioner in a university classroom. The Wells-Riley model was used to predict the risk of indoor airborne transmission of infectious diseases such as influenza, measles and tuberculosis. For each case, the air exchange rate was measured using a CO2 tracer gas technique. It was found that opening windows and doors provided an air exchange rate of 2.3 air changes/hour (ACH), while with the Split System it was 0.6 ACH. The risk of airborne infection ranged between 4.24 to 30.86 % when using the Natural Ventilation and between 8.99 to 43.19% when using the Split System. The difference of airborne infection risk between the Split System and the Natural Ventilation ranged from 47 to 56%. Opening windows and doors maximize Natural Ventilation so that the risk of airborne contagion is much lower than with Split System.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hospital acquired infections (HAI) are costly but many are avoidable. Evaluating prevention programmes requires data on their costs and benefits. Estimating the actual costs of HAI (a measure of the cost savings due to prevention) is difficult as HAI changes cost by extending patient length of stay, yet, length of stay is a major risk factor for HAI. This endogeneity bias can confound attempts to measure accurately the cost of HAI. We propose a two-stage instrumental variables estimation strategy that explicitly controls for the endogeneity between risk of HAI and length of stay. We find that a 10% reduction in ex ante risk of HAI results in an expected savings of £693 ($US 984).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australian mosquitoes from which Japanese encephalitis virus (JEV) has been recovered (Culex annulirostris, Culex gelidus, and Aedes vigilax) were assessed for their ability to be infected with the ChimeriVax-JE vaccine, with yellow fever vaccine virus 17D (YF 17D) from which the backbone of ChimeriVax-JE vaccine is derived and with JEV-Nakayama. None of the mosquitoes became infected after being fed orally with 6.1 log(10) plaque-forming units (PFU)/mL of ChimeriVax-JE vaccine, which is greater than the peak viremia in vaccinees (mean peak viremia = 4.8 PFU/mL, range = 0-30 PFU/mL of 0.9 days mean duration, range = 0-11 days). Some members of all three species of mosquito became infected when fed on JEV-Nakayama, but only Ae. vigilax was infected when fed on YF 17D. The results suggest that none of these three species of mosquito are likely to set up secondary cycles of transmission of ChimeriVax-JE in Australia after feeding on a viremic vaccinee.