45 resultados para Natural gas pipelines
em Queensland University of Technology - ePrints Archive
Resumo:
Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 kmph. Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 1012 particles min-1 at idle to 1015 particles km-1 at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.
Resumo:
Compressed natural gas (CNG) engines are thought to be less harmful to the environment than conventional diesel engines, especially in terms of particle emissions. Although, this is true with respect to particulate matter (PM) emissions, results of particle number (PN) emission comparisons have been inconclusive. In this study, results of on-road and dynamometer studies of buses were used to derive several important conclusions. We show that, although PN emissions from CNG buses are significantly lower than from diesel buses at low engine power, they become comparable at high power. For diesel buses, PN emissions are not significantly different between acceleration and operation at steady maximum power. However, the corresponding PN emissions from CNG buses when accelerating are an order of magnitude greater than when operating at steady maximum power. During acceleration under heavy load, PN emissions from CNG buses are an order of magnitude higher than from diesel buses. The particles emitted from CNG buses are too small to contribute to PM10 emissions or contribute to a reduction of visibility, and may consist of semivolatile nanoparticles.
Resumo:
Motor vehicle emission factors are generally derived from driving tests mimicking steady state conditions or transient drive cycles. However, neither of these test conditions completely represents real world driving conditions. In particular, they fail to determine emissions generated during the accelerating phase – a condition in which urban buses spend much of their time. In this study we analyse and compare the results of time-dependant emission measurements conducted on diesel and compressed natural gas (CNG) buses during an urban driving cycle on a chassis dynamometer and we derive power-law expressions relating carbon dioxide (CO2) emission factors to the instantaneous speed while accelerating from rest. Emissions during acceleration are compared with that during steady speed operation. These results have important implications for emission modelling particularly under congested traffic conditions.
Resumo:
Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilising a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that, while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100ºC and 250ºC, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilisation began at around 40°C with the majority occurring by 80°C. Particles produced during hard acceleration from rest exhibited lower volatility than that produced during other times of the cycle. Based on our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these non-volatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100ºC removed ultrafine particle numbers by 69% to 82% when a nucleation mode was present and just 18% when it was not.
Resumo:
Selective separation of nitrogen (N2) from methane (CH4) is highly significant in natural gas purification, and it is very challenging to achieve this because of their nearly identical size (the molecular diameters of N2 and CH4 are 3.64 Å and 3.80 Å, respectively). Here we theoretically study the adsorption of N2 and CH4 on B12 cluster and solid boron surfaces a-B12 and c-B28. Our results show that these electron-deficiency boron materials have higher selectivity in adsorbing and capturing N2 than CH4, which provides very useful information for experimentally exploiting boron materials for natural gas purification.
Resumo:
Natural gas (the main component is methane) has been widely used as a fuel and raw material in industry. Removal of nitrogen (N2) from methane (CH4) can reduce the cost of natural gas transport and improve its efficiency. However, their extremely similar size increases the difficulty of separating N2 from CH4. In this study, we have performed a comprehensive investigation of N2 and CH4 adsorption on different charge states of boron nitride (BN) nanocage fullerene, B36N36, by using a density functional theory approach. The calculational results indicate that B36N36 in the negatively charged state has high selectivity in separating N2 from CH4. Moreover, once the extra electron is removed from the BN nanocage, the N2 will be released from the material. This study demonstrates that the B36N36 fullerene can be used as a highly selective and reusable material for the separation of N2 from CH4. The study also provides a clue to experimental design and application of BN nanomaterials for natural gas purification.
Resumo:
Groundwater from Maramarua has been identified as coal seam gas (CSG) water by studying its composition, and comparing it against the geochemical signature from other CSG basins. CSG is natural gas that has been produced through thermogenic and biogenic processes in underground coal seams; CSG extraction requires the abstraction of significant amounts of CSG water. To date, no international literature has described coal seam gas water in New Zealand, however recent CSG exploration work has resulted in CSG water quality data from a coal seam in Maramarua, New Zealand. Water quality from this site closely follows the geochemical signature associated with United States CSG waters, and this has helped to characterise the type of water being abstracted. CSG water from this part of Maramarua has low calcium, magnesium, and sulphate concentrations but high sodium (334 mg/l), chloride (146 mg/l) and bicarbonate (435 mg/l) concentrations. In addition, this water has high pH (7.8) and alkalinity (360 mg/l as CaCO3), which is a direct consequence of carbonate dissolution and biogenic processes. Different analyte ratios ('source-rock deduction' method) have helped to identify the different formation processes responsible in shaping Maramarua CSG water
Resumo:
Coal Seam Gas (CSG) is a form of natural gas (mainly methane) sorbed in underground coal beds. To mine this gas, wells are drilled directly into an underground coal seam and groundwater (CSG water) is pumped out to the surface. This lowers the downhole piezometric pressure and enables gas desporption from the coal matrix. In the United States, this gas has been extracted commercially since the 1980s. The economic success of US CSG projects has inspired exploration and development in Australia and New Zealand. In Australia, Queensland’s Bowen and Surat basins have been the subject of increased CSG development over the last decade. CSG growth in other Australian basins has not matured to the same level but exploration and development are taking place at an accelerated pace in the Sydney Basin (Illawarra and the Hunter Valley, NSW) and in the Gunnedah Basin. Similarly, CSG exploration in New Zealand has focused in the Waikato region (Maramarua and Huntly), in the West Coast region (Buller, Reefton, and Greymouth), and in Southland (Kaitangata, Mataura, and Ohai). Figure 1 shows a Shcoeller diagram with CSG samples from selected basins in Australia, New Zealand, and the USA. CSG water from all of these basins exhibit the same geochemical signature – low calcium, low magnesium, high bicarbonate, low sulphate and, sometimes, high chloride. This water quality is a direct result of specific biological and geological processes that have taken part in the formation of CSG. In general, these processes include the weathering of rocks (carbonates, dolomite, and halite), cation exchange with clays (responsible for enhanced sodium and depleted calcium and magnesium), and biogenic processes (accounting for the presence of high bicarbonate concentrations). The salinity of CSG waters tends to be brackish (TDS < 30000 mg/l) with a fairly neutral pH. These particular characteristics need to be taken into consideration when assessing water management and disposal alternatives. Environmental issues associated with CSG water disposal have been prominent in developed basins such as the Powder River Basin (PRB) in the United States. When disposed on the land or used for irrigation, water having a high dissolved salts content may reduce water availability to crops thus affecting crop yield. In addition, the high sodium, low calcium and low magnesium concentrations increase the potential to disperse soils and significantly reduce the water infiltration rate. Therefore, CSG waters need to be properly characterised, treated, and disposed to safeguard the environment without compromising other natural resources.
Resumo:
Concern about the increasing atmospheric CO2 concentration and its impact on the environment has led to increasing attention directed toward finding advanced materials and technologies suited for efficient CO2 capture, storage and purification of clean-burning natural gas. In this letter, we have performed comprehensive theoretical investigation of CO2, N2, CH4 and H2 adsorption on B2CNTs. Our study shows that CO2 molecules can form strong interactions with B2CNTs with different charge states. However, N2, CH4 and H2 can only form very weak interactions with B2CNTs. Therefore, the study demonstrates B2CNTs could sever as promising materials for CO2 capture and gas separation.
Resumo:
Organic compounds in Australian coal seam gas produced water (CSG water) are poorly understood despite their environmental contamination potential. In this study, the presence of some organic substances is identified from government-held CSG water-quality data from the Bowen and Surat Basins, Queensland. These records revealed the presence of polycyclic aromatic hydrocarbons (PAHs) in 27% of samples of CSG water from the Walloon Coal Measures at concentrations <1 µg/L, and it is likely these compounds leached from in situ coals. PAHs identified from wells include naphthalene, phenanthrene, chrysene and dibenz[a,h]anthracene. In addition, the likelihood of coal-derived organic compounds leaching to groundwater is assessed by undertaking toxicity leaching experiments using coal rank and water chemistry as variables. These tests suggest higher molecular weight PAHs (including benzo[a]pyrene) leach from higher rank coals, whereas lower molecular weight PAHs leach at greater concentrations from lower rank coal. Some of the identified organic compounds have carcinogenic or health risk potential, but they are unlikely to be acutely toxic at the observed concentrations which are almost negligible (largely due to the hydrophobicity of such compounds). Hence, this study will be useful to practitioners assessing CSG water related environmental and health risk.
Resumo:
Coal seam gas (CSG) is a growing industry in Queensland and represents a potential major employer and deliverer of financial prosperity for years to come. CSG is a natural gas composed primarily of methane and is found trapped underground in coal beds. During the gas extraction process, significant volumes of associated water are also produced. This associated water could be a valuable resource, however, the associated water comprises of various salt constituents that make it problematic for beneficial use. Consequently, there is a need to implement various water treatment strategies to purify the associated water to comply with Queensland’s strict guidelines and to mitigate environmental risks. The resultant brine is also of importance as ultimately it also has to be dealt with in an economical manner. In some ways it can be considered that the CSG industry does not face a water problem, as this has inherent value to society, but rather has a “salt issue” to solve. This study analyzes the options involved in both the water treatment and salt recovery processes. A brief overview of the constituents present in Queensland CS water is made to illustrate the challenges involved and a range of treatment technologies discussed. Water treatment technologies examined include clarification (ballasted flocculation, dissolved air flotation, electrocoagulation), membrane filtration (ultrafiltration), ion exchange softening and desalination (ion exchange, reverse osmosis desalination and capacitance deionization). In terms of brine management we highlighted reinjection, brine concentration ponds, membrane techniques (membrane distillation, forward osmosis), thermal methods, electrodialysis, electrodialysis reversal, bipolar membrane electrodialysis, wind assisted intensive evaporation, membrane crystallization, eutectic freeze crystallization and vapor compression. As an entirety this investigation is designed to be an important tool in developing CS water treatment management strategies for effective management in Queensland and worldwide.
Resumo:
This paper argues for a future-oriented, inclusion of Engineering Model Eliciting Activities (EngMEAs) in elementary mathematics curricula. In EngMEAs students work with meaningful engineering problems that capitalise on and extend their existing mathematics and science learning, to develop, revise and document powerful models, while working in groups. The models developed by six groups of 12-year students in solving the Natural Gas activity are presented. Results showed that student models adequately solved the problem, although student models did not take into account all the data provided. Student solutions varied to the extent students employed the engineering context in their models and to their understanding of the mathematical concepts involved in the problem. Finally, recommendations for implementing EngMEAs and for further research are discussed.
Resumo:
In condition-based maintenance (CBM), effective diagnostics and prognostics are essential tools for maintenance engineers to identify imminent fault and to predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedules production if necessary. This paper presents a technique for accurate assessment of the remnant life of machines based on historical failure knowledge embedded in the closed loop diagnostic and prognostic system. The technique uses the Support Vector Machine (SVM) classifier for both fault diagnosis and evaluation of health stages of machine degradation. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for multi-class fault diagnosis. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.