6 resultados para National Transportation Safety Board, Washington, D.C.
em Queensland University of Technology - ePrints Archive
Resumo:
The use of intelligent transport systems is proliferating across the Australian road network, particularly on major freeways. New technology allows a greater range of signs and messages to be displayed to drivers. While there has been a long history of human factors analyses of signage, no evaluation has been conducted on this novel, sometimes dynamic, signage or potential interactions when co-located. The purpose of this driving simulator study was to investigate drivers’ behavioural changes and comprehension resulting from the co-location of Lane Use Management Systems with static signs and (Enhanced) Variable Message Signs on Queensland motorways. A section of motorway was simulated, and nine scenarios were developed which presented a combination of signage cases across levels of driving task complexity. Two higher-risk road user groups were targeted for this research on an advanced driving simulator: older (65+ years, N=21) and younger (18-22 years, N=20) drivers. Changes in sign co-location and task complexity had small effect on driver comprehension of the signs and vehicle dynamics variables, including difference with the posted speed limit, headway, standard deviation of lane keeping and brake jerks. However, increasing the amount of information provided to drivers at a given location (by co-locating several signs) increased participants’ gaze duration on the signs. With co-location of signs and without added task complexity, a single gaze was over 2s for more than half of the population tested for both groups, and up to 6 seconds for some individuals.
Resumo:
Pilot cars are used in one-lane two-way work zones to guide traffic and keep their speeds within posted limits. While many studies have examined the effectiveness of measures to reduce vehicle speeds in work zones, little is known about the reductions achievable through the use of pilot cars. This paper examines the effectiveness of a pilot car in reducing travel speeds in a rural highway work zone in Queensland, Australia. Analysis of speed data covering a period of five days showed that a pilot car reduced average speeds at the treatment location, but not downstream. The proportion of vehicles speeding through the activity area was also reduced, particularly those traveling at 10 km/h or more above the posted limit. Motorists were more likely to speed during the day, under a 40 kh/h limit, when traffic volumes were higher and when there were fewer vehicles in the traffic stream. Medium vehicles were less likely to speed in the presence of a pilot car than light vehicles. To maximize these benefits, it is necessary to ensure that the pilot car itself is not speeding.
Resumo:
There are currently more than 400 cities operating bike share programs. Purported benefits of bike share programs include flexible mobility, physical activity, reduced congestion, emissions and fuel use. Implicit or explicit in the calculation of program benefits are assumptions regarding the modes of travel replaced by bike share journeys. This paper examines the degree to which car trips are replaced by bike share, through an examination of survey and trip data from bike share programs in Melbourne, Brisbane, Washing, D.C., London, and Minneapolis/St. Paul. A secondary and unique component of this analysis examines motor vehicle support services required for bike share fleet rebalancing and maintenance. These two components are then combined to estimate bike share’s overall contribution to changes in vehicle kilometres traveled. The results indicate that the estimated mean reduction in car use due to bike share is at least twice the distance covered by operator support vehicles, with the exception of London, in which the relationship is reversed, largely due to a low car mode substitution rate. As bike share programs mature, evaluation of their effectiveness in reducing car use may become increasingly important. This paper reveals that by increasing the convenience of bike share relative to car use and by improving perceptions of safety, the capacity of bike share programs to reduce vehicle trips and yield overall net benefits will be enhanced. Researchers can adapt the analytical approach proposed in this paper to assist in the evaluation of current and future bike share programs.
Resumo:
The existence of the Macroscopic Fundamental Diagram (MFD), which relates network space-mean density and flow, has been shown in urban networks under homogeneous traffic conditions. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. The key requirements for the well-defined MFD is the homogeneity of the area wide traffic condition, which is not universally expected in real world. For the practical application of the MFD concept, several researchers have identified the influencing factors for network homogeneity. However, they did not explicitly take drivers’ behaviour under real time information provision into account, which has a significant impact on the shape of the MFD. This research aims to demonstrate the impact of drivers’ route choice behaviour on network performance by employing the MFD as a measurement. A microscopic simulation is chosen as an experimental platform. By changing the ratio of en-route informed drivers and pre-trip informed drivers as well as by taking different route choice parameters, various scenarios are simulated in order to investigate how drivers’ adaptation to the traffic congestion influences the network performance and the MFD shape. This study confirmed and addressed the impact of information provision on the MFD shape and highlighted the significance of the route choice parameter setting as an influencing factor in the MFD analysis.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow. Since the MFD represents the area-wide network traffic performance, studies on perimeter control strategies and network-wide traffic state estimation utilising the MFD concept have been reported. Most previous works have utilised data from fixed sensors, such as inductive loops, to estimate the MFD, which can cause biased estimation in urban networks due to queue spillovers at intersections. To overcome the limitation, recent literature reports the use of trajectory data obtained from probe vehicles. However, these studies have been conducted using simulated datasets; limited works have discussed the limitations of real datasets and their impact on the variable estimation. This study compares two methods for estimating traffic state variables of signalised arterial sections: a method based on cumulative vehicle counts (CUPRITE), and one based on vehicles’ trajectory from taxi Global Positioning System (GPS) log. The comparisons reveal some characteristics of taxi trajectory data available in Brisbane, Australia. The current trajectory data have limitations in quantity (i.e., the penetration rate), due to which the traffic state variables tend to be underestimated. Nevertheless, the trajectory-based method successfully captures the features of traffic states, which suggests that the trajectories from taxis can be a good estimator for the network-wide traffic states.
Resumo:
The current state of the practice in Blackspot Identification (BSI) utilizes safety performance functions based on total crash counts to identify transport system sites with potentially high crash risk. This paper postulates that total crash count variation over a transport network is a result of multiple distinct crash generating processes including geometric characteristics of the road, spatial features of the surrounding environment, and driver behaviour factors. However, these multiple sources are ignored in current modelling methodologies in both trying to explain or predict crash frequencies across sites. Instead, current practice employs models that imply that a single underlying crash generating process exists. The model mis-specification may lead to correlating crashes with the incorrect sources of contributing factors (e.g. concluding a crash is predominately caused by a geometric feature when it is a behavioural issue), which may ultimately lead to inefficient use of public funds and misidentification of true blackspots. This study aims to propose a latent class model consistent with a multiple crash process theory, and to investigate the influence this model has on correctly identifying crash blackspots. We first present the theoretical and corresponding methodological approach in which a Bayesian Latent Class (BLC) model is estimated assuming that crashes arise from two distinct risk generating processes including engineering and unobserved spatial factors. The Bayesian model is used to incorporate prior information about the contribution of each underlying process to the total crash count. The methodology is applied to the state-controlled roads in Queensland, Australia and the results are compared to an Empirical Bayesian Negative Binomial (EB-NB) model. A comparison of goodness of fit measures illustrates significantly improved performance of the proposed model compared to the NB model. The detection of blackspots was also improved when compared to the EB-NB model. In addition, modelling crashes as the result of two fundamentally separate underlying processes reveals more detailed information about unobserved crash causes.