624 resultados para Nano-particle growth

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lagrangian particle tracking provides an effective method for simulating the deposition of nano- particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. The aim of this paper is to study the deposition of nano-particles in cylindrical tubes under laminar condition using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different pipe lengths and flow rates are examined. The results show good agreement between the calculated deposition efficiency and different analytic correlations in the literature. Furthermore, for the nano-particles with higher diameters and when the effect of inertia has a higher importance, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosol deposition in cylindrical tubes is a subject of interest to researchers and engineers in many applications of aerosol physics and metrology. Investigation of nano-particles in different aspects such as lungs, upper airways, batteries and vehicle exhaust gases is vital due the smaller size, adverse health effect and higher trouble for trapping than the micro-particles. The Lagrangian particle tracking provides an effective method for simulating the deposition of nano-particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. In this paper, the deposition of nano-particles in cylindrical tubes under laminar condition is studied using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different flow rates are examined. The point analysis in a uniform flow is performed for validating the Brownian motion. The results show good agreement between the calculated deposition efficiency and the analytic correlations in the literature. Furthermore, for the nano-particles with the diameter more than 40 nm, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A month-long intensive measurement campaign was conducted in March/April 2007 at Agnes Water, a remote coastal site just south of the Great Barrier Reef on the east coast of Australia. Particle and ion size distributions were continuously measured during the campaign. Coastal nucleation events were observed in clean, marine air masses coming from the south-east on 65% of the days. The events usually began at ~10:00 local time and lasted for 1-4 hrs. They were characterised by the appearance of a nucleation mode with a peak diameter of ~10 nm. The freshly nucleated particles grew within 1-4 hrs up to sizes of 20-50 nm. The events occurred when solar intensity was high (~1000 W m-2) and RH was low (~60%). Interestingly, the events were not related to tide height. The volatile and hygroscopic properties of freshly nucleated particles (17-22.5 nm), simultaneously measured with a volatility-hygroscopicity-tandem differential mobility analyser (VH-TDMA), were used to infer chemical composition. The majority of the volume of these particles was attributed to internally mixed sulphate and organic components. After ruling out coagulation as a source of significant particle growth, we conclude that the condensation of sulphate and/or organic vapours was most likely responsible for driving particle growth during the nucleation events. We cannot make any direct conclusions regarding the chemical species that participated in the initial particle nucleation. However, we suggest that nucleation may have resulted from the photo-oxidation products of unknown sulphur or organic vapours emitted from the waters of Hervey Bay, or from the formation of DMS-derived sulphate clusters over the open ocean that were activated to observable particles by condensable vapours emitted from the nutrient rich waters around Fraser Island or Hervey Bay. Furthermore, a unique and particularly strong nucleation event was observed during northerly wind. The event began early one morning (08:00) and lasted almost the entire day resulting in the production of a large number of ~80 nm particles (average modal concentration during the event was 3200 cm-3). The Great Barrier Reef was the most likely source of precursor vapours responsible for this event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To examine the ability of silver nano-particles to prevent the growth of Pseudomonas aeruginosa and Staphylococcus aureus in solution or when adsorbed into contact lenses. To examine the ability of silver nano-particles to prevent the growth of Acanthamoeba castellanii. ----- ----- Methods: Etafilcon A lenses were soaked in various concentrations of silver nano-particles. Bacterial cells were then exposed to these lenses, and numbers of viable cells on lens surface or in solution compared to etafilcon A lenses not soaked in silver. Acanthamoeba trophozoites were exposed to silver nano-particles and their ability to form tracks was examined. ----- ----- Results: Silver nano-particle containing lenses reduced bacterial viability and adhesion. There was a dose-dependent response curve, with 10 ppm or 20 ppm silver showing > 5 log reduction in bacterial viability in solution or on the lens surface. For Acanthamoeba, 20 ppm silver reduced the ability to form tracks by approximately 1 log unit. ----- ----- Conclusions: Silver nanoparticles are effective antimicrobial agents, and can reduce the ability of viable bacterial cells to colonise contact lenses once incorporated into the lens.----- ----- Resumen: Objetivos: Examinar la capacidad de las nanopartículas de plata para prevenir el crecimiento de Pseudomonas aeruginosa y Staphylococcus aureus en soluciones para lentes de contacto o cuando éstas las adsorben. Examinar la capacidad de las nanopartículas de plata para prevenir el crecimiento de Acanthamoeba castellanii.----- ----- Métodos: Se sumergieron lentes etafilcon A en diversas concentraciones de nanopartículas de plata. Las células bacterianas fueron posteriormente expuestas a dichas lentes, y se compararon cantidades de células viables en la superficie de la lente o en la solución con las presentes en lentes etafilcon A que no habían sido sumergidas en plata. Trofozoítos de Acanthamoeba fueron expuestos a nanopartículas de plata y se examinó su capacidad para formar quistes.----- ----- Resultados: Las lentes que contienen nanopartículas de plata redujeron la viabilidad bacteriana y la adhesión. Hubo una curva de respuesta dependiente de la dosis, en la que 10 ppm o 20 ppm de plata mostró una reducción logarítmica > 5 en la viabilidad bacteriana tanto en la solución como en la superficie de la lente. Para Acanthamoeba, 20 ppm de plata redujeron la capacidad de formar quistes en aproximadamente 1 unidad logarítmica.----- ----- Conclusiones: Las nanopartículas de plata son agentes antimicrobianos eficaces y pueden reducir la capacidad de células bacterianas viables para colonizar las lentes de contacto una vez que se han incorporado en la lente.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to characterise the new particle formation events in a subtropical urban environment in the southern hemisphere. The study measured the number concentration of particles and its size distribution in Brisbane, Australia during 2009. The variation of particle number concentration and nucleation burst events were characterised as well as the particle growth rate which was first reported in urban environment of Australia. The annual average NUFP, NAitken and NNuc were 9.3 x 103, 3.7 x 103 and 5.6 x 103 cm-3, respectively. Weak seasonal variation in number concentration was observed. Local traffic exhaust emissions were a major contributor of the pollution (NUFP) observed in morning which was dominated by the Aitken mode particles, while particles formed by secondary formation processes contributed to the particle number concentration during afternoon. Overall, 65 nucleation burst events were identified during the study period. Nucleation burst events were classified into two groups, with and without particles growth after the burst of nucleation mode particles observed. The average particle growth rate of the nucleation events was 4.6 nm hr-1 (ranged from 1.79 – 7.78 nm hr-1). Case studies of the nucleation burst events were characterised including i) the nucleation burst with particle growth which is associated with the particle precursor emitted from local traffic exhaust emission, ii) the nucleation burst without particle growth which is due to the transport of industrial emissions from the coast to Brisbane city or other possible sources with unfavourable conditions which suppressed particle growth and iii) interplay between the above two cases which demonstrated the impact of the vehicle and industrial emissions on the variation of particle number concentration and its size distribution during the same day.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

New particle formation (NPF) and growth have been observed in different environments all around the world and NPF affects the environment by forming cloud condensation nuclei (CCN). Detailed characterisation of NPF events in a subtropical urban environment is the main aim of this study. Particle size distribution (PSD) of atmospheric aerosol particles in range 9-414 nm were measured using a Scanning Mobility Particle Sizer (SMPS), within the framework of the “Ultrafine Particles from Traffic Emissions and Children’s Health” (UPTECH) study, which seeks to determine the relationship between exposure to traffic related ultrafine particles and children’s health (http://www.ilaqh.qut. edu.au/Misc/UPTECH%20Home.htm). The UPTECH study includes measurements of air quality, meteorological and traffic parameters in 25 randomly selected state primary school within the Brisbane metropolitan area, in Queensland, Australia. Measurements at 17 schools have been completed so far.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Atmospheric ultrafine particles play an important role in affecting human health, altering climate and degrading visibility. Numerous studies have been conducted to better understand the formation process of these particles, including field measurements, laboratory chamber studies and mathematical modeling approaches. Field studies on new particle formation found that formation processes were significantly affected by atmospheric conditions, such as the availability of particle precursors and meteorological conditions. However, those studies were mainly carried out in rural areas of the northern hemisphere and information on new particle formation in urban areas, especially those in subtropical regions, is limited. In general, subtropical regions display a higher level of solar radiation, along with stronger photochemical reactivity, than those regions investigated in previous studies. However, based on the results of these studies, the mechanisms involved in the new particle formation process remain unclear, particularly in the Southern Hemisphere. Therefore, in order to fill this gap in knowledge, a new particle formation study was conducted in a subtropical urban area in the Southern Hemisphere during 2009, which measured particle size distribution in different locations in Brisbane, Australia. Characterisation of nucleation events was conducted at the campus building of the Queensland University of Technology (QUT), located in an urban area of Brisbane. Overall, the annual average number concentrations of ultrafine, Aitken and nucleation mode particles were found to be 9.3 x 103, 3.7 x 103 and 5.6 x 103 cm-3, respectively. This was comparable to levels measured in urban areas of northern Europe, but lower than those from polluted urban areas such as the Yangtze River Delta, China and Huelva and Santa Cruz de Tenerife, Spain. Average particle number concentration (PNC) in the Brisbane region did not show significant seasonal variation, however a relatively large variation was observed during the warmer season. Diurnal variation of Aitken and nucleation mode particles displayed different patterns, which suggested that direct vehicle exhaust emissions were a major contributor of Aitken mode particles, while nucleation mode particles originated from vehicle exhaust emissions in the morning and photochemical production at around noon. A total of 65 nucleation events were observed during 2009, in which 40 events were classified as nucleation growth events and the remainder were nucleation burst events. An interesting observation in this study was that all nucleation growth events were associated with vehicle exhaust emission plumes, while the nucleation burst events were associated with industrial emission plumes from an industrial area. The average particle growth rate for nucleation events was found to be 4.6 nm hr-1 (ranging from 1.79-7.78 nm hr-1), which is comparable to other urban studies conducted in the United States, while monthly particle growth rates were found to be positively related to monthly solar radiation (r = 0.76, p <0.05). The particle growth rate values reported in this work are the first of their kind to be reported for the subtropical urban area of Australia. Furthermore, the influence of nucleation events on PNC within the urban airshed was also investigated. PNC was simultaneously measured at urban (QUT), roadside (Woolloongabba) and semi-urban (Rocklea) sites in Brisbane during 2009. Total PNC at these sites was found to be significantly affected by regional nucleation events. The relative fractions of PNC to total daily PNC observed at QUT, Woolloongabba and Rocklea were found to be 12%, 9% and 14%, respectively, during regional nucleation events. These values were higher than those observed as a result of vehicle exhaust emissions during weekday mornings, which ranged from 5.1-5.5% at QUT and Woolloongabba. In addition, PNC in the semi-urban area of Rocklea increased by a factor of 15.4 when it was upwind from urban pollution sources under the influence of nucleation burst events. Finally, we investigated the influence of sulfuric acid on new particle formation in the study region. A H2SO4 proxy was calculated by using [SO2], solar radiation and particle condensation sink data to represent the new particle production strength for the urban, roadside and semi-urban areas of Brisbane during the period June-July of 2009. The temporal variations of the H2SO4 proxies and the nucleation mode particle concentration were found to be in phase during nucleation events in the urban and roadside areas. In contrast, the peak of proxy concentration occurred 1-2 hr prior to the observed peak in nucleation mode particle concentration at the downwind semi-urban area of Brisbane. A moderate to strong linear relationship was found between the proxy and the freshly formed particles, with r2 values of 0.26-0.77 during the nucleation events. In addition, the log[H2SO4 proxy] required to produce new particles was found to be ~1.0 ppb Wm-2 s and below 0.5 ppb Wm-2 s for the urban and semi-urban areas, respectively. The particle growth rates were similar during nucleation events at the three study locations, with an average value of 2.7 ± 0.5 nm hr-1. This result suggested that a similar nucleation mechanism dominated in the study region, which was strongly related to sulphuric acid concentration, however the relationship between the proxy and PNC was poor in the semi-urban area of Rocklea. This can be explained by the fact that the nucleation process was initiated upwind of the site and the resultant particles were transported via the wind to Rocklea. This explanation is also supported by the higher geometric mean diameter value observed for particles during the nucleation event and the time lag relationship between the H2SO4 proxy and PNC observed at Rocklea. In summary, particle size distribution was continuously measured in a subtropical urban area of southern hemisphere during 2009, the findings from which formed the first particle size distribution dataset in the study region. The characteristics of nucleation events in the Brisbane region were quantified and the properties of the nucleation growth and burst events are discussed in detail using a case studies approach. To further investigate the influence of nucleation events on PNC in the study region, PNC was simultaneously measured at three locations to examine the spatial variation of PNC during the regional nucleation events. In addition, the impact of upwind urban pollution on the downwind semi-urban area was quantified during these nucleation events. Sulphuric acid was found to be an important factor influencing new particle formation in the urban and roadside areas of the study region, however, a direct relationship with nucleation events at the semi-urban site was not observed. This study provided an overview of new particle formation in the Brisbane region, and its influence on PNC in the surrounding area. The findings of this work are the first of their kind for an urban area in the southern hemisphere.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sol-gel synthesis in varied gravity is only a relatively new topic in the literature and further investigation is required to explore its full potential as a method to synthesise novel materials. Although trialled for systems such as silica, the specific application of varied gravity synthesis to other sol-gel systems such as titanium has not previously been undertaken. Current literature methods for the synthesis of sol-gel material in reduced gravity could not be applied to titanium sol-gel processing, thus a new strategy had to be developed in this study. To successfully conduct experiments in varied gravity a refined titanium sol-gel chemical precursor had to be developed which allowed the single solution precursor to remain un-reactive at temperatures up to 50oC and only begin to react when exposed to a pressure decrease from a vacuum. Due to the new nature of this precursor, a thorough characterisation of the reaction precursors was subsequently undertaken with the use of techniques such as Nuclear Magnetic Resonance, Infra-red and UV-Vis spectroscopy in order to achieve sufficient understanding of precursor chemistry and kinetic stability. This understanding was then used to propose gelation reaction mechanisms under varied gravity conditions. Two unique reactor systems were designed and built with the specific purpose to allow the effects of varied gravity (high, normal, reduced) during synthesis of titanium sol-gels to be studied. The first system was a centrifuge capable of providing high gravity environments of up to 70 g’s for extended periods, whilst applying a 100 mbar vacuum and a temperature of 40-50oC to the reaction chambers. The second system to be used in the QUT Microgravity Drop Tower Facility was also required to provide the same thermal and vacuum conditions used in the centrifuge, but had to operate autonomously during free fall. Through the use of post synthesis characterisation techniques such as Raman Spectroscopy, X-Ray diffraction (XRD) and N2 adsorption, it was found that increased gravity levels during synthesis, had the greatest effect on the final products. Samples produced in reduced and normal gravity appeared to form amorphous gels containing very small particles with moderate surface areas. Whereas crystalline anatase (TiO2), was found to form in samples synthesised above 5 g with significant increases in crystallinity, particle size and surface area observed when samples were produced at gravity levels up to 70 g. It is proposed that for samples produced in higher gravity, an increased concentration gradient of water is forms at the bottom of the reacting film due to forced convection. The particles formed in higher gravity diffuse downward towards this excess of water, which favours the condensation reaction of remaining sol gel precursors with the particles promoting increased particle growth. Due to the removal of downward convection in reduced gravity, particle growth due to condensation reaction processes are physically hindered hydrolysis reactions favoured instead. Another significant finding from this work was that anatase could be produced at relatively low temperatures of 40-50oC instead of the conventional method of calcination above 450oC solely through sol-gel synthesis at higher gravity levels. It is hoped that the outcomes of this research will lead to an increased understanding of the effects of gravity on chemical synthesis of titanium sol-gel, potentially leading to the development of improved products suitable for diverse applications such as semiconductor or catalyst materials as well as significantly reducing production and energy costs through manufacturing these materials at significantly lower temperatures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The charge and chemical composition of ambient particles in an urban environment were determined using a Neutral Particle and Air Ion Spectrometer and an Aerodyne compact Time-Of-Flight Aerosol Mass Spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulphate, which were not observed in the organic fraction. Comparison of days with and without particle formation events revealed that ammonium and sulphate were the dominant species on particle formation days while high concentrations of biomass burning OA inhibited particle growth. Analyses of the degree of particle neutralisation lead us to conclude that an excess of ammonium enabled particle formation and growth. In addition, the large ion concentration increased sharply during particle growth, suggesting that during nucleation the neutral gaseous species ammonia and sulphuric acid react to form ammonium and sulphate ions. Overall, we conclude that the mechanism of particle formation and growth involved ammonia and sulphuric acid, with limited input from organics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Self-organization and dynamic processes of nano/micron-sized solid particles grown in low-temperature chemically active plasmas as well as the associated physico-chemical processes are reviewed. Three specific reactive plasma chemistries, namely, of silane (SiH4), acetylene (C 2H2), and octafluorocyclobutane (c-C4F 8) RF plasma discharges for plasma enhanced chemical vapor deposition of amorphous hydrogenated silicon, hydrogenated and fluorinated carbon films, are considered. It is shown that the particle growth mechanisms and specific self-organization processes in the complex reactive plasma systems are related to the chemical organization and size of the nanoparticles. Correlation between the nanoparticle origin and self-organization in the ionized gas phase and improved thin film properties is reported. Self-organization and dynamic phenomena in relevant reactive plasma environments are studied for equivalent model systems comprising inert buffer gas and mono-dispersed organic particulate powders. Growth kinetics and dynamic properties of the plasma-assembled nanoparticles can be critical for the process quality in microelectronics as well as a number of other industrial applications including production of fine metal or ceramic powders, nanoparticle-unit thin film deposition, nanostructuring of substrates, nucleating agents in polymer and plastics synthesis, drug delivery systems, inorganic additives for sunscreens and UV-absorbers, and several others. Several unique properties of the chemically active plasma-nanoparticle systems are discussed as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water uptake refers to the ability of atmospheric particles to take up water vapour from the surrounding atmosphere. This is an important property that affects particle size and phase and therefore influences many characteristics of aerosols relevant to air quality and climate. However, the water uptake properties of many important atmospheric aerosol systems, including those related to the oceans, are still not fully understood. Therefore, the primary aim of this PhD research program was to investigate the water uptake properties of marine aerosols. In particular, the effect of organics on marine aerosol water uptake was investigated. Field campaigns were conducted at remote coastal sites on the east coast of Australia (Agnes Water; March-April 2007) and west coast of Ireland (Mace Head; June 2007), and laboratory measurements were performed on bubble-generated sea spray aerosols. A combined Volatility-Hygroscopicity-Tandem Differential Mobility Analyser (VH-TDMA) was employed in all experiments. This system probes the changes in the hygroscopic properties of nanoparticles as volatile organic components are progressively evaporated. It also allows particle composition to be inferred from combined volatility-hygroscopicity measurements. Frequent new particle formation and growth events were observed during the Agnes Water campaign. The VH-TDMA was used to investigate freshly nucleated particles (17-22.5 nm) and it was found that the condensation of sulphate and/or organic vapours was responsible for driving particle growth during the events. Aitken mode particles (~40 nm) were also measured with the VH-TDMA. In 3 out of 18 VH-TDMA scans evaporation of a volatile, organic component caused a very large increase in hygroscopicity that could only be explained by an increase in the absolute water uptake of the particle residuals, and not merely an increase in their relative hygroscopicity. This indicated the presence of organic components that were suppressing the hygroscopic growth of mixed particles on the timescale of humidification in the VH-TDMA (6.5 secs). It was suggested that the suppression of water uptake was caused by either a reduced rate of hygroscopic growth due to the presence of organic films, or organic-inorganic interactions in solution droplets that had a negative effect on hygroscopicity. Mixed organic-inorganic particles were rarely observed by the VH-TDMA during the summer campaign conducted at Mace Head. The majority of particles below 100 nm in clean, marine air appeared to be sulphates neutralised to varying degrees by ammonia. On one unique day, 26 June 2007, particularly large concentrations of sulphate aerosol were observed and identified as volcanic emissions from Iceland. The degree of neutralisation of the sulphate aerosol by ammonia was calculated by the VH-TDMA and found to compare well with the same quantity measured by an aerosol mass spectrometer. This was an important verification of the VH-TMDA‘s ability to identify ammoniated sulphate aerosols based on the simultaneous measurement of aerosol volatility and hygroscopicity. A series of measurements were also conducted on sea spray aerosols generated from Moreton Bay seawater samples in a laboratory-based bubble chamber. Accumulation mode sea spray particles (38-173 nm) were found to contain only a minor organic fraction (< 10%) that had little effect on particle hygroscopicity. These results are important because previous studies have observed that accumulation mode sea spray particles are predominantly organic (~80% organic mass fraction). The work presented here suggests that this is not always the case, and that there may be currently unknown factors that are controlling the transfer of organics to the aerosol phase during the bubble bursting process. Taken together, the results of this research program have significantly improved our understanding of organic-containing marine aerosols and the way they interact with water vapour in the atmosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes an investigation into the effectiveness of using spray-on nano-particle reinforced polymer and aluminium foam as new types of retrofit material to prevent the breaching and collapse of unreinforced concrete masonry walls subjected to blast over a whole range of dynamic and impulsive regimes. Material models from the LSDYNA material library were used to model the behaviors of each of the materials and its interface for retrofitted and unretrofitted masonry walls. Available test data were used to validate the numerical models. Using the validated LS-DYNA numerical models, the pressure-impulse diagrams for retrofitted concrete masonry walls were constructed. The efficiency of using these retrofits to strengthen the unreinforced concrete masonry unit (CMU) walls under various pressures and impulses was investigated using pressure-impulse diagrams. Comparisons were made to find the most efficient retrofits for masonry walls against blasts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two unique test systems were designed and built to allow the effects of varied gravity (high, normal, reduced) during synthesis of titanium sol–gels to be studied. A centrifuge capable of providing high gravity environments of up to 70 g for extended periods while applying a 100 mbar vacuum and a temperature of 40–50 °C to the reaction chambers was developed. The second system was used in the QUT Microgravity Drop Tower Facility also provided the same thermal and vacuum conditions used in the centrifuge, but was required to operate autonomously during free fall. Through the use of post synthesis instrumental characterization, it was found that increased gravity levels during synthesis, had the greatest effect on the final products. Samples produced in reduced and normal gravity appeared to form amorphous gels containing very small particles with moderate surface areas. Whereas crystalline anatase (TiO2), was found to form in samples synthesized above 5 g with significant increases in crystallinity, particle size and surface area observed when samples were produced at gravity levels up to 70 g. It is proposed that for samples produced in higher gravity, an increased concentration gradient of water is forms at the bottom of the reacting film due to forced convection. The particles formed in higher gravity diffuse downward toward this excess of water, which favors the condensation reaction of remaining sol–gel precursors with the particles promoting increased particle growth. Due to the removal of downward convection in reduced gravity, particle growth due to condensation reaction processes are physically hindered hydrolysis reactions favored instead. Another significant finding from this work was that anatase could be produced at relatively low temperatures of 40–50 °C instead of the conventional method of calcination above 450 °C solely through sol–gel synthesis at higher gravity levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis studied cadmium sulfide and cadmium selenide quantum dots and their performance as light absorbers in quantum dot-sensitised solar cells. This research has made contributions to the understanding of size dependent photodegradation, passivation and particle growth mechanism of cadmium sulfide quantum dots using SILAR method and the role of ZnSe shell coatings on solar cell performance improvement.