3 resultados para Myoblasts

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electropermeabilization (EP) is an effective method of gene transfer into different tissues. During EP, reactive oxygen species (ROS) are formed, which could affect transfection efficiency. The role of generated ROS and the role of antioxidants in electrotransfer in myoblasts in vitro and in Musculus tibialis cranialis in mice were, therefore, investigated. We demonstrate in the study that during EP of C2C12 myoblasts, ROS are generated on the surface of the cells, which do not induce long-term genomic DNA damage. Plasmid DNA for transfection (pEGFP-N1), which is present outside the cells during EP, neutralizes the generated ROS. The ROS generation is proportional to the amplitude of the electric pulses and can be scavenged by antioxidants, such as vitamin C or tempol. When antioxidants were used during gene electrotransfer, the transfection efficiency of C2C12 myoblasts was statistically significantly increased 1.6-fold with tempol. Also in vivo, the transfection efficiency of M. tibialis cranialis in mice was statistically significantly increased 1.4-fold by tempol. The study indicates that ROS are generated on cells during EP and can be scavenged by antioxidants. Specifically, tempol can be used to improve gene electrotransfer into the muscle and possibly also to other tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytokines are important mediators of various aspects of health and disease, including appetite, glucose and lipid metabolism, insulin sensitivity, skeletal muscle hypertrophy and atrophy. Over the past decade or so, considerable attention has focused on the potential for regular exercise to counteract a range of disease states by modulating cytokine production. Exercise stimulates moderate to large increases in the circulating concentrations of interleukin (IL)-6, IL-8, IL-10, IL-1 receptor antagonist, granulocyte-colony stimulating factor, and smaller increases in tumor necrosis factor-α, monocyte chemotactic protein-1, IL-1β, brain-derived neurotrophic factor, IL-12p35/p40 and IL-15. Although many of these cytokines are also expressed in skeletal muscle, not all are released from skeletal muscle into the circulation during exercise. Conversely, some cytokines that are present in the circulation are not expressed in skeletal muscle after exercise. The reasons for these discrepant cytokine responses to exercise are unclear. In this review, we address these uncertainties by summarizing the capacity of skeletal muscle cells to produce cytokines, analyzing other potential cellular sources of circulating cytokines during exercise, and discussing the soluble factors and intracellular signaling pathways that regulate cytokine synthesis (e.g., RNA-binding proteins, microRNAs, suppressor of cytokine signaling proteins, soluble receptors).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition. © The Author 2014.