18 resultados para Morfologia floral

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Arabidopsis, the identity of perianth and reproductive organs are specified by antagonistic action of two floral homeotic genes, APETALA2 (AP2) and AGAMOUS (AG). AP2 is also negatively regulated by an evolutionary conserved interaction with a microRNA, miR172, and has additional roles in general plant development. A kiwifruit gene with high levels of homology to AP2 and AP2-like genes from other plant species was identified. The transcript was abundant in the kiwifruit flower, particularly petal, suggesting a role in floral organ identity. Splice variants were identified, all containing both AP2 domains, including a variant that potentially produces a shorter transcript without the miRNA172 targeting site. Increased AP2 transcript accumulation was detected in the aberrant flowers of the mutant 'Pukekohe dwarf' with multiple perianth whorls and extended petaloid features. In contrast to normal kiwifruit flowers, the aberrant flowers failed to accumulate miR172 in the developing whorls, although accumulation was detected at the base of the flower. An additional role during dormancy in kiwifruit was proposed based on AP2 transcript accumulation in axillary buds before and after budbreak.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the Australian wet tropics bioregion, only 900 000 hectares of once continuous rainforest habitat between Townsville and Cooktown now remains. While on the Atherton Tableland, only 4% of the rainforest that once occurred there remains today with remnant vegetation now forming a matrix of rainforest dispersed within agricultural land (sugarcane, banana, orchard crops, townships and pastoral land). Some biologists have suggested that remnants often support both faunal and floral communities that differ significantly from remaining continuous forest. Australian tropical forests possess a relatively high diversity of native small mammal species particularly rodents, which unlike larger mammalian and avian frugivores elsewhere, have been shown to be resilient to the effects of fragmentation, patch isolation and reduction in patch size. While small mammals often become the dominant mammalian frugivores, in terms of their relative abundance, the relationship that exists between habitat diversity and structure, and the impacts of small mammal foraging within fragmented habitat patches in Australia, is still poorly understood. The relationship between foraging behaviour and demography of two small mammal species, Rattus fuscipes and Melomys cervinipes, and food resources in fragmented rainforest sites, were investigated in the current study. Population densities of both species were strongly related with overall density of seed resources in all rainforest fragments. The distribution of both mammal species however, was found to be independent of the distribution of seed resources. Seed utilisation trials indicated that M.cervinipes and R.fuscipes had less impact on seed resources (extent of seed harvesting) than did other rainforest frugivores. Experimental feeding trials demonstrated that in 85% of fruit species tested, rodent feeding increased seed germination by a factor of 3.5 suggesting that in Australian tropical rainforest remnants, small mammals may play a significant role in enhancing germination of large seeded fruits. This study has emphasised the role of small mammals in tropical rainforest systems in north eastern Australia, in particular, the role that they play within isolated forest fragments where larger frugivorous species may be absent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paesaggio ed infrastrutture viarie sono un binomio molto forte: il primo ha insito il concetto di accessibilità, in quanto non può esistere senza la presenza di un osservatore; la strada, invece, trova i fattori che la connotano nel suo rapporto con la morfologia su cui insiste. Le infrastrutture viarie sono elemento strutturale e strutturante non solo di un territorio, ma anche di un paesaggio. Le attuali esigenze di mobilità portano oggi a ripensare ed adeguare molte infrastrutture viarie: laddove è possibile si potenziano le strutture esistenti, in diversi casi si ricorre a nuovi tracciati o a varianti di percorso. Porsi il problema di conservare itinerari testimoni della cultura materiale ed economica di una società implica considerazioni articolate, che travalicano i limiti del sedime: una via è un organismo più complesso della semplice linea di trasporto in quanto implica tutta una serie di manufatti a supporto della mobilità e soprattutto il corridoio infrastrutturale che genera e caratterizza, ovvero una porzione variabile di territorio definita sia dal tracciato che dalla morfologia del contesto. L’evoluzione dei modelli produttivi ed economici, che oggi porta quote sempre maggiori di popolazione a passare un tempo sempre minore all’interno del proprio alloggio, rende la riflessione sulle infrastrutture viarie dismesse o declassate occasione per la progettazione di spazi per l’abitare collettivo inseriti in contesti paesaggistici, tanto urbani che rurali, tramite reti di percorsi pensate per assorbire tagli di mobilità specifici e peculiari. Partendo da queste riflessioni la Tesi si articola in: Individuazioni del contesto teorico e pratico: Lo studio mette in evidenza come la questione delle infrastrutture viarie e del loro rapporto con il paesaggio implichi riflessioni incrociate a diversi livelli e tramite diverse discipline. La definizione dello spazio fisico della strada passa infatti per la costruzione di un itinerario, un viaggio che si appoggia tanto ad elementi fisici quanto simbolici. La via è un organismo complesso che travalica il proprio sedime per coinvolgere una porzione ampia di territorio, un corridoio variabile ed articolato in funzione del paesaggio attraversato. Lo studio propone diverse chiavi di lettura, mettendo in luce le possibili declinazioni del tema, in funzione del taglio modale, del rapporto con il contesto, del regime giuridico, delle implicazioni urbanistiche e sociali. La mobilità dolce viene individuata quale possibile modalità di riuso, tutela e recupero, del patrimonio diffuso costituito dalle diversi reti di viabilità. Antologia di casi studio: Il corpo principale dello studio si basa sulla raccolta, analisi e studio dello stato dell’arte nel settore; gli esempi raccolti sono presentati in due sezioni: la prima dedicata alle esperienze più significative ed articolate, che affrontano il recupero delle infrastrutture viarie a più livelli ed in modo avanzato non concentrandosi solo sulla conversione del sedime, ma proponendo un progetto che coinvolga tutto il corridoio attraversato dall’infrastruttura; la seconda parte illustra la pratica corrente nelle diverse realtà nazionali, ponendo in evidenza similitudini e differenze tra i vari approcci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light plays a unique role for plants as it is both a source of energy for growth and a signal for development. Light captured by the pigments in the light harvesting complexes is used to drive the synthesis of the chemical energy required for carbon assimilation. The light perceived by photoreceptors activates effectors, such as transcription factors (TFs), which modulate the expression of light-responsive genes. Recently, it has been speculated that increasing the photosynthetic rate could further improve the yield potential of three carbon (C3) crops such as wheat. However, little is currently known about the transcriptional regulation of photosynthesis genes, particularly in crop species. Nuclear factor Y (NF-Y) TF is a functionally diverse regulator of growth and development in the model plant species, with demonstrated roles in embryo development, stress response, flowering time and chloroplast biogenesis. Furthermore, a light-responsive NF-Y binding site (CCAAT-box) is present in the promoter of a spinach photosynthesis gene. As photosynthesis genes are co-regulated by light and co-regulated genes typically have similar regulatory elements in their promoters, it seems likely that other photosynthesis genes would also have light-responsive CCAAT-boxes. This provided the impetus to investigate the NF-Y TF in bread wheat. This thesis is focussed on wheat NF-Y members that have roles in light-mediated gene regulation with an emphasis on their involvement in the regulation of photosynthesis genes. NF-Y is a heterotrimeric complex, comprised of the three subunits NF-YA, NF-YB and NF-YC. Unlike the mammalian and yeast counterparts, each of the three subunits is encoded by multiple genes in Arabidopsis. The initial step taken in this study was the identification of the wheat NF-Y family (Chapter 3). A search of the current wheat nucleotide sequence databases identified 37 NF-Y genes (10 NF-YA, 11 NF-YB, 14 NF-YC & 2 Dr1). Phylogenetic analysis revealed that each of the three wheat NF-Y (TaNF-Y) subunit families could be divided into 4-5 clades based on their conserved core regions. Outside of the core regions, eleven motifs were identified to be conserved between Arabidopsis, rice and wheat NF-Y subunit members. The expression profiles of TaNF-Y genes were constructed using quantitative real-time polymerase chain reaction (RT-PCR). Some TaNF-Y subunit members had little variation in their transcript levels among the organs, while others displayed organ-predominant expression profiles, including those expressed mainly in the photosynthetic organs. To investigate their potential role in light-mediated gene regulation, the light responsiveness of the TaNF-Y genes were examined (Chapters 4 and 5). Two TaNF-YB and five TaNF-YC members were markedly upregulated by light in both the wheat leaves and seedling shoots. To identify the potential target genes of the light-upregulated NF-Y subunit members, a gene expression correlation analysis was conducted using publically available Affymetrix Wheat Genome Array datasets. This analysis revealed that the transcript expression levels of TaNF-YB3 and TaNF-YC11 were significantly correlated with those of photosynthesis genes. These correlated express profiles were also observed in the quantitative RT-PCR dataset from wheat plants grown under light and dark conditions. Sequence analysis of the promoters of these wheat photosynthesis genes revealed that they were enriched with potential NF-Y binding sites (CCAAT-box). The potential role of TaNF-YB3 in the regulation of photosynthetic genes was further investigated using a transgenic approach (Chapter 5). Transgenic wheat lines constitutively expressing TaNF-YB3 were found to have significantly increased expression levels of photosynthesis genes, including those encoding light harvesting chlorophyll a/b-binding proteins, photosystem I reaction centre subunits, a chloroplast ATP synthase subunit and glutamyl-tRNA reductase (GluTR). GluTR is a rate-limiting enzyme in the chlorophyll biosynthesis pathway. In association with the increased expression of the photosynthesis genes, the transgenic lines had a higher leaf chlorophyll content, increased photosynthetic rate and had a more rapid early growth rate compared to the wild-type wheat. In addition to its role in the regulation of photosynthesis genes, TaNF-YB3 overexpression lines flower on average 2-days earlier than the wild-type (Chapter 6). Quantitative RT-PCR analysis showed that there was a 13-fold increase in the expression level of the floral integrator, TaFT. The transcript levels of other downstream genes (TaFT2 and TaVRN1) were also increased in the transgenic lines. Furthermore, the transcript levels of TaNF-YB3 were significantly correlated with those of constans (CO), constans-like (COL) and timing of chlorophyll a/b-binding (CAB) expression 1 [TOC1; (CCT)] domain-containing proteins known to be involved in the regulation of flowering time. To summarise the key findings of this study, 37 NF-Y genes were identified in the crop species wheat. An in depth analysis of TaNF-Y gene expression profiles revealed that the potential role of some light-upregulated members was in the regulation of photosynthetic genes. The involvement of TaNF-YB3 in the regulation of photosynthesis genes was supported by data obtained from transgenic wheat lines with increased constitutive expression of TaNF-YB3. The overexpression of TaNF-YB3 in the transgenic lines revealed this NF-YB member is also involved in the fine-tuning of flowering time. These data suggest that the NF-Y TF plays an important role in light-mediated gene regulation in wheat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grandiflora: Recent Paintings by Daniel Mafe The paintings of Grandiflora are improvised around a range of different flower motifs culled from medieval textiles and botanical illustrations. Each of the paintings is constructed upon a ground of flat, palely luminous yellow occasionally supplemented by additional areas of high-keyed pastel. Pink, blue, green and mauve together with the yellow, generate a shimmering and even incandescent glow. The graphic images of the flowers with the flat colour areas are then contrasted and worked over with richly sensual, abstract gestures of paint. Within the work there is a pronounced almost rococo-esque opticality as it operates between these different visual codes of flat colour, recognizable floral forms, and gesture. These codes combine to produce a definite visceral impact on the viewer, a pronounced and tactile sense of the experience and ambiguity inherent in perceiving. This ambiguity is interestingly at odds with the apparently clean and crisp quality each painting demonstrates as an integrated whole. Indeed each piece goes on to reveal, despite the use of overt figurative quotations, a sense of the purely abstract which in its turn concretely establishes the ornamental.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unlike most genera in the early-divergent angiosperm family Annonaceae, Pseuduvaria exhibits a diversity of floral sex expression. Most species are structurally andromonoecious (or possibly androdioecious), although the hermaphroditic flowers have been inferred to be functionally pistillate, with sterile staminodes. Pseuduvaria presents an ideal model for investigating the evolution of floral sex in early-divergent angiosperms, although detailed empirical studies are currently lacking. The phenology and pollination ecology of the Australian endemic species Pseuduvaria mulgraveana are studied in detail, including evaluations of floral scent chemistry, pollen viability, and floral visitors. Results showed that the flowers are pollinated by small diurnal nitidulid beetles and are protogynous. Pollen from both hermaphroditic and staminate flowers are shown to be equally viable. The structurally hermaphroditic flowers are nevertheless functionally pistillate as anther dehiscence is delayed until after petal abscission and hence after the departure of pollinators. This mechanism to achieve functional unisexuality of flowers has not previously been reported in angiosperms. It is known that protogyny is widespread amongst early-divergent angiosperms, including the Annonaceae, and is effective in preventing autogamy. Delayed anther dehiscence represents a further elaboration of this, and is effective in preventing geitonogamy since very few sexually mature flowers occur simultaneously in an individual. We highlight the necessity for field-based empirical interpretations of functional floral sex expression prior to evaluations of evolutionary processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Odours emitted by flowers are complex blends of volatile compounds. These odours are learnt by flower-visiting insect species, improving their recognition of rewarding flowers and thus foraging efficiency. We investigated the flexibility of floral odour learning by testing whether adult moths recognize single compounds common to flowers on which they forage. Dual choice preference tests on Helicoverpa armigera moths allowed free flying moths to forage on one of three flower species; Argyranthemum frutescens (federation daisy), Cajanus cajan (pigeonpea) or Nicotiana tabacum (tobacco). Results showed that, (i) a benzenoid (phenylacetaldehyde) and a monoterpene (linalool) were subsequently recognized after visits to flowers that emitted these volatile constituents, (ii) in a preference test, other monoterpenes in the flowers' odour did not affect the moths' ability to recognize the monoterpene linalool and (iii) relative preferences for two volatiles changed after foraging experience on a single flower species that emitted both volatiles. The importance of using free flying insects and real flowers to understand the mechanisms involved in floral odour learning in nature are discussed in the context of our findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixtures of single odours were used to explore the receptor response profile across individual antennae of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Seven odours were tested including floral and green-leaf volatiles: phenyl acetaldehyde, benzaldehyde, β-caryophyllene, limonene, α-pinene, 1-hexanol, 3Z-hexenyl acetate. Electroantennograms of responses to paired mixtures of odours showed that there was considerable variation in receptor tuning across the receptor field between individuals. Data from some moth antennae showed no additivity, which indicated a restricted receptor profile. Results from other moth antennae to the same odour mixtures showed a range of partial additivity. This indicated that a wider array of receptor types was present in these moths, with a greater percentage of the receptors tuned exclusively to each odour. Peripheral receptor fields show variation in the spectrum of response within a population (of moths) when exposed to high doses of plant volatiles. This may be related to recorded variation in host choice within moth populations as reported by other authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In plants, double-stranded RNA (dsRNA) is an effective trigger of RNA silencing, and several classes of endogenous small RNA (sRNA), processed from dsRNA substrates by DICER-like (DCL) endonucleases, are essential in controlling gene expression. One such sRNA class, the microRNAs (miRNAs) control the expression of closely related genes to regulate all aspects of plant development, including the determination of leaf shape, leaf polarity, flowering time, and floral identity. A single miRNA sRNA silencing signal is processed from a long precursor transcript of nonprotein-coding RNA, termed the primary miRNA (pri-miRNA). A region of the pri-miRNA is partially self-complementary allowing the transcript to fold back onto itself to form a stem-loop structure of imperfectly dsRNA. Artificial miRNA (amiRNA) technology uses endogenous pri-miRNAs, in which the miRNA and miRNA*(passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/ amiRNA*sequences that direct highly efficient RNA silencing of the targeted gene. Here, we describe the rules for amiRNA design, as well as outline the PCR and bacterial cloning procedures involved in the construction of an amiRNA plant expression vector to control target gene expression in Arabidopsis thaliana. © 2014 Springer Science+Business Media New York.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Flower development in kiwifruit (Actinidia spp.) is initiated in the first growing season, when undifferentiated primordia are established in latent shoot buds. These primordia can differentiate into flowers in the second growing season, after the winter dormancy period and upon accumulation of adequate winter chilling. Kiwifruit is an important horticultural crop, yet little is known about the molecular regulation of flower development. Results To study kiwifruit flower development, nine MADS-box genes were identified and functionally characterized. Protein sequence alignment, phenotypes obtained upon overexpression in Arabidopsis and expression patterns suggest that the identified genes are required for floral meristem and floral organ specification. Their role during budbreak and flower development was studied. A spontaneous kiwifruit mutant was utilized to correlate the extended expression domains of these flowering genes with abnormal floral development. Conclusions This study provides a description of flower development in kiwifruit at the molecular level. It has identified markers for flower development, and candidates for manipulation of kiwifruit growth, phase change and time of flowering. The expression in normal and aberrant flowers provided a model for kiwifruit flower development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MADS-box genes similar to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been implicated in the regulation of flowering in annual species and bud dormancy in perennial species. Kiwifruit (Actinidia spp.) are woody perennial vines where bud dormancy and out-growth affect flower development. To determine the role of SVP-like genes in dormancy and flowering of kiwifruit, four MADS-box genes with homology to Arabidopsis SVP, designated SVP1, SVP2, SVP3, and SVP4, have been identified and analysed in kiwifruit and functionally characterized in Arabidopsis. Phylogenetic analysis indicate that these genes fall into different sub-clades within the SVP-like gene group, suggesting distinct functions. Expression was generally confined to vegetative tissues, and increased transcript accumulation in shoot buds over the winter period suggests a role for these genes in bud dormancy. Down-regulation before flower differentiation indicate possible roles as floral repressors. Over-expression and complementation studies in Arabidopsis resulted in a range of floral reversion phenotypes arising from interactions with Arabidopsis MADS-box proteins, but only SVP1 and SVP3 were able to complement the svp mutant. These results suggest that the kiwifruit SVP-like genes may have distinct roles during bud dormancy and flowering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The vegetative phenotype of the pea mutant unifoliata (uni) is a simplification of the wild-type compound leaf to a single leaflet. Mutant uni plants are also self-sterile and the flowers resemble known floral meristem and organ identity mutants. In Antirrhinum and Arabidopsis, mutations in the floral meristem identity gene FLORICAULA/LEAFY (FLO/LFY) affect flower development alone, whereas the tobacco FLO/LFY homologue, NFL, is expressed in vegetative tissues, suggesting that NFL specifies determinacy in the progenitor cells for both flowers and leaves. In this paper, we characterised the pea homologue of FLO/LFY. Results The pea cDNA homologue of FLO/LFY, PEAFLO, mapped to the uni locus in recombinant-inbred mapping populations and markers based on PEAFLO cosegregated with uni in segregating sibling populations. The characterisation of two spontaneous uni mutant alleles, one containing a deletion and the other a point mutation in the PEAFLO coding sequences, predicted that PEAFLO corresponds to UNI and that the mutant vegetative phenotype was conferred by the defective PEAFLO gene. Conclusions The uni mutant demonstrates that there are shared regulatory processes in the morphogenesis of leaves and flowers and that floral meristem identity genes have an extended role in plant development. Pleiotropic regulatory genes such as UNI support the hypothesis that leaves and flowers derive from a common ancestral sporophyll-like structure. The regulation of indeterminacy during leaf and flower morphogenesis by UNI may reflect a primitive function for the gene in the pre-angiosperm era.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.