5 resultados para Modelli termici IGBT
em Queensland University of Technology - ePrints Archive
Resumo:
With the increase in the level of global warming, renewable energy based distributed generators (DGs) will increasingly play a dominant role in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cells and micro turbines will gain considerable momentum in the near future. A microgrid consists of clusters of load and distributed generators that operate as a single controllable system. The interconnection of the DG to the utility/grid through power electronic converters has raised concern about safe operation and protection of the equipments. Many innovative control techniques have been used for enhancing the stability of microgrid as for proper load sharing. The most common method is the use of droop characteristics for decentralized load sharing. Parallel converters have been controlled to deliver desired real power (and reactive power) to the system. Local signals are used as feedback to control converters, since in a real system, the distance between the converters may make the inter-communication impractical. The real and reactive power sharing can be achieved by controlling two independent quantities, frequency and fundamental voltage magnitude. In this thesis, an angle droop controller is proposed to share power amongst converter interfaced DGs in a microgrid. As the angle of the output voltage can be changed instantaneously in a voltage source converter (VSC), controlling the angle to control the real power is always beneficial for quick attainment of steady state. Thus in converter based DGs, load sharing can be performed by drooping the converter output voltage magnitude and its angle instead of frequency. The angle control results in much lesser frequency variation compared to that with frequency droop. An enhanced frequency droop controller is proposed for better dynamic response and smooth transition between grid connected and islanded modes of operation. A modular controller structure with modified control loop is proposed for better load sharing between the parallel connected converters in a distributed generation system. Moreover, a method for smooth transition between grid connected and islanded modes is proposed. Power quality enhanced operation of a microgrid in presence of unbalanced and non-linear loads is also addressed in which the DGs act as compensators. The compensator can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid A frequency and voltage isolation technique between microgrid and utility is proposed by using a back-to-back converter. As utility and microgrid are totally isolated, the voltage or frequency fluctuations in the utility side do not affect the microgrid loads and vice versa. Another advantage of this scheme is that a bidirectional regulated power flow can be achieved by the back-to-back converter structure. For accurate load sharing, the droop gains have to be high, which has the potential of making the system unstable. Therefore the choice of droop gains is often a tradeoff between power sharing and stability. To improve this situation, a supplementary droop controller is proposed. A small signal model of the system is developed, based on which the parameters of the supplementary controller are designed. Two methods are proposed for load sharing in an autonomous microgrid in rural network with high R/X ratio lines. The first method proposes power sharing without any communication between the DGs. The feedback quantities and the gain matrixes are transformed with a transformation matrix based on the line R/X ratio. The second method involves minimal communication among the DGs. The converter output voltage angle reference is modified based on the active and reactive power flow in the line connected at point of common coupling (PCC). It is shown that a more economical and proper power sharing solution is possible with the web based communication of the power flow quantities. All the proposed methods are verified through PSCAD simulations. The converters are modeled with IGBT switches and anti parallel diodes with associated snubber circuits. All the rotating machines are modeled in detail including their dynamics.
Resumo:
Paesaggio ed infrastrutture viarie sono un binomio molto forte: il primo ha insito il concetto di accessibilità, in quanto non può esistere senza la presenza di un osservatore; la strada, invece, trova i fattori che la connotano nel suo rapporto con la morfologia su cui insiste. Le infrastrutture viarie sono elemento strutturale e strutturante non solo di un territorio, ma anche di un paesaggio. Le attuali esigenze di mobilità portano oggi a ripensare ed adeguare molte infrastrutture viarie: laddove è possibile si potenziano le strutture esistenti, in diversi casi si ricorre a nuovi tracciati o a varianti di percorso. Porsi il problema di conservare itinerari testimoni della cultura materiale ed economica di una società implica considerazioni articolate, che travalicano i limiti del sedime: una via è un organismo più complesso della semplice linea di trasporto in quanto implica tutta una serie di manufatti a supporto della mobilità e soprattutto il corridoio infrastrutturale che genera e caratterizza, ovvero una porzione variabile di territorio definita sia dal tracciato che dalla morfologia del contesto. L’evoluzione dei modelli produttivi ed economici, che oggi porta quote sempre maggiori di popolazione a passare un tempo sempre minore all’interno del proprio alloggio, rende la riflessione sulle infrastrutture viarie dismesse o declassate occasione per la progettazione di spazi per l’abitare collettivo inseriti in contesti paesaggistici, tanto urbani che rurali, tramite reti di percorsi pensate per assorbire tagli di mobilità specifici e peculiari. Partendo da queste riflessioni la Tesi si articola in: Individuazioni del contesto teorico e pratico: Lo studio mette in evidenza come la questione delle infrastrutture viarie e del loro rapporto con il paesaggio implichi riflessioni incrociate a diversi livelli e tramite diverse discipline. La definizione dello spazio fisico della strada passa infatti per la costruzione di un itinerario, un viaggio che si appoggia tanto ad elementi fisici quanto simbolici. La via è un organismo complesso che travalica il proprio sedime per coinvolgere una porzione ampia di territorio, un corridoio variabile ed articolato in funzione del paesaggio attraversato. Lo studio propone diverse chiavi di lettura, mettendo in luce le possibili declinazioni del tema, in funzione del taglio modale, del rapporto con il contesto, del regime giuridico, delle implicazioni urbanistiche e sociali. La mobilità dolce viene individuata quale possibile modalità di riuso, tutela e recupero, del patrimonio diffuso costituito dalle diversi reti di viabilità. Antologia di casi studio: Il corpo principale dello studio si basa sulla raccolta, analisi e studio dello stato dell’arte nel settore; gli esempi raccolti sono presentati in due sezioni: la prima dedicata alle esperienze più significative ed articolate, che affrontano il recupero delle infrastrutture viarie a più livelli ed in modo avanzato non concentrandosi solo sulla conversione del sedime, ma proponendo un progetto che coinvolga tutto il corridoio attraversato dall’infrastruttura; la seconda parte illustra la pratica corrente nelle diverse realtà nazionali, ponendo in evidenza similitudini e differenze tra i vari approcci.
Resumo:
Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.
Resumo:
To cover wide range of pulsed power applications, this paper proposes a modularity concept to improve the performance and flexibility of the pulsed power supply. The proposed scheme utilizes the advantage of parallel and series configurations of flyback modules in obtaining high-voltage levels with fast rise time (dv/dt). Prototypes were implemented using 600-V insulated-gate bipolar transistor (IGBT) switches to generate up to 4-kV output pulses with 1-kHz repetition rate for experimentation. To assess the proposed modular approach for higher number of the modules, prototypes were implemented using 1700-V IGBTs switches, based on ten-series modules, and tested up to 20 kV. Conducted experimental results verified the effectiveness of the proposed method
Resumo:
Traditional methods of isolated MOSFET/IGBT gate drive are presented, and their pros and cons assessed. The best options are chosen to meet our objective— a small, high speed, low cost, low power isolated gate drive module. Two small ferrite bead transformers are used for isolation, one transmits power at 2.5MHz, the other sends narrow set reset pulses. On the secondary these pulses drive a transistor totem pole to ensure high current drive, and the value is held by CMOS buffers with positive feedback. An alternative design for driving logic level devices uses only an HC buffer on the secondary. Double sided SMDconstruction (primary one side, secondary on the other) yields an upright module 40x18x5mm. Propagation delaywas 20ns, and rise/fall time 15ns with a 1nF load. The design places no limits on frequency of operation or duty cycle. Power supply requirementswere 5V@20mA for operation below 100kHz, dominated by magnetising current.