297 resultados para Mixed protonic electronic conductors

em Queensland University of Technology - ePrints Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the use of exploratory focus groups to inform the development of a survey instrument in a sequential phase mixed methods study investigating differences in secondary students’ career choice capability. Five focus groups were conducted with 23 year 10 students in the state of New South Wales (NSW), Australia. Analysis of the focus group data informed the design of the instrument for the second phase of the research project: a large-scale cross-sectional survey. In this paper, we discuss the benefits of using sequential phase mixed method approaches when inquiring into complex phenomena such as human capability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mixed double-decker Eu\[Pc(15C5)4](TPP) (1) was obtained by base-catalysed tetramerisation of 4,5-dicyanobenzo-15-crown-5 using the half-sandwich complex Eu(TPP)(acac) (acac = acetylacetonate), generated in situ, as the template. For comparative studies, the mixed triple-decker complexes Eu2\[Pc(15C5)4](TPP)2 (2) and Eu2\[Pc(15C5)4]2(TPP) (3) were also synthesised by the raise-by-one-story method. These mixed ring sandwich complexes were characterised by various spectroscopic methods. Up to four one-electron oxidations and two one-electron reductions were revealed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). As shown by electronic absorption and infrared spectroscopy, supramolecular dimers (SM1 and SM3) were formed from the corresponding double-decker 1 and triple-decker 3 in the presence of potassium ions in MeOH/CHCl3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of scheduling a cane transport system involving both rail transport and road transport, where the road transport operates from several sidings in the rail network. An iterative approach for scheduling the rail transport system has been developed using existing rail transport scheduling tools. The assumption that harvesters serviced by road transport are effectively operating from the rail siding from which their bins are supplied seems a reasonable starting point for the analysis. There is a need to manually modify the schedule to take into account the road transport schedule to ensure that full bins are not collected before the road transport system delivers them back to the rail siding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modernized GPS and GLONASS, together with new GNSS systems, BeiDou and Galileo, offer code and phase ranging signals in three or more carriers. Traditionally, dual-frequency code and/or phase GPS measurements are linearly combined to eliminate effects of ionosphere delays in various positioning and analysis. This typical treatment method has imitations in processing signals at three or more frequencies from more than one system and can be hardly adapted itself to cope with the booming of various receivers with a broad variety of singles. In this contribution, a generalized-positioning model that the navigation system independent and the carrier number unrelated is promoted, which is suitable for both single- and multi-sites data processing. For the synchronization of different signals, uncalibrated signal delays (USD) are more generally defined to compensate the signal specific offsets in code and phase signals respectively. In addition, the ionospheric delays are included in the parameterization with an elaborate consideration. Based on the analysis of the algebraic structures, this generalized-positioning model is further refined with a set of proper constrains to regularize the datum deficiency of the observation equation system. With this new model, uncalibrated signal delays (USD) and ionospheric delays are derived for both GPS and BeiDou with a large dada set. Numerical results demonstrate that, with a limited number of stations, the uncalibrated code delays (UCD) are determinate to a precision of about 0.1 ns for GPS and 0.4 ns for BeiDou signals, while the uncalibrated phase delays (UPD) for L1 and L2 are generated with 37 stations evenly distributed in China for GPS with a consistency of about 0.3 cycle. Extra experiments concerning the performance of this novel model in point positioning with mixed-frequencies of mixed-constellations is analyzed, in which the USD parameters are fixed with our generated values. The results are evaluated in terms of both positioning accuracy and convergence time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltammetric techniques have been introduced to monitor the formation of gold nanoparticles produced via the reaction of the amino acid glycyl-L-tyrosine with Au(III) (bromoaurate) in 0.05 M KOH conditions. The alkaline conditions facilitate amino acid binding to Au(III), inhibit the rate of reduction to Au(0), and provide an excellent supporting electrolyte for voltammetric studies. Data obtained revealed that a range of time-dependent gold solution species are involved in gold nanoparticle formation and that the order in which reagents are mixed is critical to the outcome. Concomitantly with voltammetric measurements, the properties of gold nanoparticles formed are probed by examination of electronic spectra in order to understand how the solution environment present during nanoparticle growth affects the final distribution of the nanoparticles. Images obtained by the ex situ transmission electron microscopy (TEM) technique enable the physical properties of the nanoparticles isolated in the solid state to be assessed. Use of this combination of in situ and ex situ techniques provides a versatile framework for elucidating the details of nanoparticle formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of tunnel junction resistances on the electronic property and the magneto-resistance of few-layer graphene sheet networks is investigated. By decreasing the tunnel junction resistances, transition from strong localization to weak localization occurs and magneto-resistance changes from positive to negative. It is shown that the positive magneto-resistance is due to Zeeman splitting of the electronic states at the Fermi level as it changes with the bias voltage. As the tunnel junction resistances decrease, the network resistance is well described by 2D weak localization model. Sensitivity of the magneto-resistance to the bias voltage becomes negligible and diminishes with increasing temperature. It is shown 2D weak localization effect mainly occurs inside of the few-layer graphene sheets and the minimum temperature of 5 K in our experiments is not sufficiently low to allow us to observe 2D weak localization effect of the networks as it occurs in 2D disordered metal films. Furthermore, defects inside the few-layer graphene sheets have negligible effect on the resistance of the networks which have small tunnel junction resistances between few-layer graphene sheets

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical characteristics of a series of heteroleptic tris(phthalocyaninato) complexes with identical rare earths or mixed rare earths (Pc)M(OOPc)M(OOPc) [M = Eu...Lu, Y; H2Pc = unsubstituted phthalocyanine, H2(OOPc) = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] and (Pc)Eu(OOPc)Er(OOPc) have been recorded and studied comparatively by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetrabutylammonium perchlorate (TBAP). Up to five quasi-reversible one-electron oxidations and four one-electron reductions have been revealed. The half-wave potentials of the first, second and fifth oxidations depend on the size of the metal center, but the fifth changes in the opposite direction to that of the first two. Moreover, the difference in redox potentials of the first oxidation and first reduction for (Pc)M(OOPc)M(OOPc), 0.85−0.98 V, also decreases linearly along with decreasing rare earth ion radius, clearly showing the rare earth ion size effect and indicating enhanced π−π interactions in the triple-deckers connected by smaller lanthanides. This order follows the red-shift seen in the lowest energy band of triple-decker compounds. The electronic differences between the lanthanides and yttrium are more apparent for triple-decker sandwich complexes than for the analogous double-deckers. By comparing triple-decker, double-decker and mononuclear [ZnII] complexes containing the OOPc ligand, the HOMO−LUMO gap has been shown to contract approximately linearly with the number of stacked phthalocyanine ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible, near-infrared, IR and Raman spectra of magnesian gaspeite are presented. Nickel ion is the main source of the electronic bands as it is the principal component in the mineral where as the bands in IR and Raman spectra are due to the vibrational processes in the carbonate ion as an entity. The combination of electronic absorption and vibrational spectra (including near-infrared, FTIR and Raman) of magnesian gaspeite are explained in terms of the cation co-ordination and the behaviour of CO32– anion in the Ni–Mg carbonate. The electronic absorption spectrum consists of three broad and intense bands at 8130, 13160 and 22730 cm–1 due to spin-allowed transitions and two weak bands at 20410 and 30300 cm–1 are assigned to spin-forbidden transitions of Ni2+ in an octahedral symmetry. The crystal field parameters evaluated from the observed bands are Dq = 810; B = 800 and C = 3200 cm–1. The two bands in the near-infrared spectrum at 4330 and 5130 cm–1 are overtone and combination of CO32– vibrational modes. For the carbonate group, infrared bands are observed at 1020 cm–1(1 ), 870 cm–1 (2), 1418 cm–1 (3) and 750 cm–1 (4), of which3, the asymmetric stretching mode is most intense. Three well resolved Raman bands at 1571, 1088 and 331 cm–1 are assigned to 3, 1 and MO stretching vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra were recorded in the range 400–1800 cm−1 for a series of 15 mixed \[tetrakis(4-tert-butylphenyl)porphyrinato](2,3-naphthalocyaninato) rare earth double-deckers M(TBPP)(Nc) (M = Y; La–Lu except Pm) using laser excitation at 632.8 and 785 nm. Comparisons with bis(naphthalocyaninato) rare earth counterparts reveal that the vibrations of the metallonaphthalocyanine M(Nc) fragment dominate the Raman features of M(TBPP)(Nc). When excited with radiation of 632.8 nm, the most intense vibration appears at about 1595 cm−1, due to the naphthalene stretching. These complexes exhibit the marker Raman band for Nc•− as a medium-intense band in the range 1496–1507 cm−1, attributed to the coupling of pyrrole and aza stretching, while the marker Raman band of Nc2− in intermediate-valence Ce(TBPP)(Nc) appears as a strong band at 1493 cm−1 and is due to the isoindole stretchings. By contrast, when excited with radiation of 785 nm that is in close resonance with the main Q absorption band of the naphthalocyanine ligand, the ring radial vibrations at ca 680 and 735 cm−1 for MIII(TBPP)(Nc) are selectively intensified and are the most intense bands. For the cerium double-decker, the most intense vibration also acting as the marker Raman band of Nc2− appears at 1497 cm−1 with contributions from both pyrrole CC and aza CN stretches. The same vibrational modes show weak to medium intensity scattering at 1506–1509 cm−1 for MIII(TBPP)(Nc) and this is the marker Raman band of Nc•− when thus excited. The scatterings due to the Nc breathings, ring radial vibration, aza group stretchings, naphthalene stretchings, benzoisoindole stretchings and the coupling of pyrrole CC and aza CN stretchings in MIII(TBPP)(Nc) are all slightly blue shifted along with the decrease in rare earth ionic radius, confirming the effects of increased ring–ring interactions on the Raman characteristics of naphthalocyanine in the mixed ring double-deckers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.