4 resultados para Mithraculus forceps

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simulation-based training system for surgical wound debridement was developed and comprises a multimedia introduction, a surgical simulator (tutorial component), and an assessment component. The simulator includes two PCs, a haptic device, and mirrored display. Debridement is performed on a virtual leg model with a shallow laceration wound superimposed. Trainees are instructed to remove debris with forceps, scrub with a brush, and rinse with saline solution to maintain sterility. Research and development issues currently under investigation include tissue deformation models using mass-spring system and finite element methods; tissue cutting using a high-resolution volumetric mesh and dynamic topology; and accurate collision detection, cutting, and soft-body haptic rendering for two devices within the same haptic space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Paramedic education has evolved in recent times from vocational post-employment to tertiary pre-employment supplemented by clinical placement. Simulation is advocated as a means of transferring learned skills to clinical practice. Sole reliance of simulation learning using mannequin-based models may not be sufficient to prepare students for variance in human anatomy. In 2012, we trialled the use of fresh frozen human cadavers to supplement undergraduate paramedic procedural skill training. The purpose of this study is to evaluate whether cadaveric training is an effective adjunct to mannequin simulation and clinical placement. Methods A multi-method approach was adopted. The first step involved a Delphi methodology to formulate and validate the evaluation instrument. The instrument comprised of knowledge-based MCQs, Likert for self-evaluation of procedural skills and behaviours, and open answer. The second step involved a pre-post evaluation of the 2013 cadaveric training. Results One hundred and fourteen students attended the workshop and 96 evaluations were included in the analysis, representing a return rate of 84%. There was statistically significant improved anatomical knowledge after the workshop. Students' self-rated confidence in performing procedural skills on real patients improved significantly after the workshop: inserting laryngeal mask (MD 0.667), oropharyngeal (MD 0.198) and nasopharyngeal (MD 0.600) airways, performing Bag-Valve-Mask (MD 0.379), double (MD 0.344) and triple (MD 0.326,) airway manoeuvre, doing 12-lead electrocardiography (MD 0.729), using McGrath(R) laryngoscope (MD 0.726), using McGrath(R) forceps to remove foreign body (MD 0.632), attempting thoracocentesis (MD 1.240), and putting on a traction splint (MD 0.865). The students commented that the workshop provided context to their theoretical knowledge and that they gained an appreciation of the differences in normal tissue variation. Following engagement in/ completion of the workshop, students were more aware of their own clinical and non-clinical competencies. Conclusions The paramedic profession has evolved beyond patient transport with minimal intervention to providing comprehensive both emergency and non-emergency medical care. With limited availability of clinical placements for undergraduate paramedic training, there is an increasing demand on universities to provide suitable alternatives. Our findings suggested that cadaveric training using fresh frozen cadavers provides an effective adjunct to simulated learning and clinical placements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Currently, care providers and policy-makers internationally are working to promote normal birth. In Australia, such initiatives are being implemented without any evidence of the prevalence or determinants of normal birth as a multidimensional construct. This study aimed to better understand the determinants of normal birth (defined as without induction of labour, epidural/spinal/general anaesthesia, forceps/vacuum, caesarean birth, or episiotomy) using secondary analyses of data from a population survey of women in Queensland, Australia. Methods Women who birthed in Queensland during a two-week period in 2009 were mailed a survey approximately three months after birth. Women (n=772) provided retrospective data on their pregnancy, labour and birth preferences and experiences, socio-demographic characteristics, and reproductive history. A series of logistic regressions were conducted to determine factors associated with having labour, having a vaginal birth, and having a normal birth. Findings Overall, 81.9% of women had labour, 66.4% had a vaginal birth, and 29.6% had a normal birth. After adjusting for other significant factors, women had significantly higher odds of having labour if they birthed in a public hospital and had a pre-existing preference for a vaginal birth. Of women who had labour, 80.8% had a vaginal birth. Women who had labour had significantly higher odds of having a vaginal birth if they attended antenatal classes, did not have continuous fetal monitoring, felt able to ‘take their time’ in labour, and had a pre-existing preference for a vaginal birth. Of women who had a vaginal birth, 44.7% had a normal birth. Women who had a vaginal birth had significantly higher odds of having a normal birth if they birthed in a public hospital, birthed outside regular business hours, had mobility in labour, did not have continuous fetal monitoring, and were non-supine during birth. Conclusions These findings provide a strong foundation on which to base resources aimed at increasing informed decision-making for maternity care consumers, providers, and policy-makers alike. Research to evaluate the impact of modifying key clinical practices (e.g., supporting women׳s mobility during labour, facilitating non-supine positioning during birth) on the likelihood of a normal birth is an important next step.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain asymmetry, or the structural and functional specialization of each brain hemisphere, has fascinated neuroscientists for over a century. Even so, genetic and environmental factors that influence brain asymmetry are largely unknown. Diffusion tensor imaging (DTI) now allows asymmetry to be studied at a microscopic scale by examining differences in fiber characteristics across hemispheres rather than differences in structure shapes and volumes. Here we analyzed 4. Tesla DTI scans from 374 healthy adults, including 60 monozygotic twin pairs, 45 same-sex dizygotic pairs, and 164 mixed-sex DZ twins and their siblings; mean age: 24.4 years ± 1.9 SD). All DTI scans were nonlinearly aligned to a geometrically-symmetric, population-based image template. We computed voxel-wise maps of significant asymmetries (left/right differences) for common diffusion measures that reflect fiber integrity (fractional and geodesic anisotropy; FA, GA and mean diffusivity, MD). In quantitative genetic models computed from all same-sex twin pairs (N=210 subjects), genetic factors accounted for 33% of the variance in asymmetry for the inferior fronto-occipital fasciculus, 37% for the anterior thalamic radiation, and 20% for the forceps major and uncinate fasciculus (all L > R). Shared environmental factors accounted for around 15% of the variance in asymmetry for the cortico-spinal tract (R > L) and about 10% for the forceps minor (L > R). Sex differences in asymmetry (men > women) were significant, and were greatest in regions with prominent FA asymmetries. These maps identify heritable DTI-derived features, and may empower genome-wide searches for genetic polymorphisms that influence brain asymmetry.