138 resultados para Mineralogy, Determinative

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO 2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H 4SiO 4, HCO 3 -, Mg 2+, Na +, Ca 2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From a mineralogical survey of approximately 30 chondritic micrometeorites collected from the lower stratosphere and studied in detail using current electron microscopy techniques, it is concluded that these particles represent a unique group of extraterrestrial materials. These micrometeorites differ significantly in form and texture from components of carbonaceous chondrites and contain some mineral assemblages which do not occur in any meteorite class. Electron microscope investigations of chondritic micrometeorites have established that these materials (1) are extraterrestrial in origin, (2) existed in space as small objects, (3) endured minimal alteration by planetary processes since formation, and (4) can suffer minimal pulse heating (<600°C) on entering earth's atmosphere. The probable sources for chondritic interplanetary dust particles (IDPs) are cometary and asteroidal debris and, perhaps to a lesser extent, interstellar regions. These sources have not been conclusively linked to any specific mineralogical subset of IDP, although the chondritic porous (CP) aggregate is considered of likely cometary origin. Chondritic IDPs occur in two predominant mineral assemblages: (1) carbonaceous phases and phyllosilicates and (2) carbonaceous phases and nesosilicates or inosilicates, although particles with both types of silicate assemblages are observed. Olivines, pyroxenes, layer silicates, and carbon-rich phases are the most commonly occurring minerals in many chondritic IDPs. Other phases often observed in variable proportions include sulphides, spinels, metals, metal carbides, carbonates, and minor amounts of sulphates and phosphates. Individual mineral grain sizes range from micrometers (primarily pyroxenes and olivines) to nanometers, with the predominant size for all phases less than 100 nm. Specific mineral characteristics for particular chondritic IDPs provide an indication of processes which may have occurred prior to collection in the earth's stratosphere. For example, pyroxene mineralogy in some chondritic aggregates is consistent with condensation from a vapor phase and, we consider, with condensation in a turbulent solar nebula at relatively low temperatures (<1000°C). Carbonaceous phases present in other CP aggregates have been used to imply low-temperature formation processes such as Fischer-Tropsch synthesis (∼530°C) or carbonization and graphitization (∼315°C). Alteration processes have been implicated in the formation of some layer silicates in CP aggregates and may have involved hydrocryogenic alteration at <0°C. In general, interpretations of transformation processes on submicrometer-size minerals in chondritic IDPs are consistent with formation at a radius equivalent to the asteroid belt or greater during the later stages of solar nebula evolution using currently available models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chondritic porous aggregates (CPA's) belong to an important subset of small particles (usually between 5 and 50 micrometers) collected from the stratosphere by high flying aircraft. These aggregates are approximately chondritic in elemental abundance and are composed of many thousands of small­er, submicrometer particles. CPA particles have been the subject of intensive study during the past few years [1-3] and there is strong evidence that they are a new class of extraterrestrial material not represented in the meteorite collection [3,4]. However, CPA's may be related to carbonaceous chondrites and in fact, both may be part of a continuum of primitive extraterrestrial materials [5]. The importance of CPA's stems from suggestions that they are very primitive solar system material possibly derived from early formed proto­ planets, chondritic parent bodies, or comets [3, 6]. To better understand the origin and evolution of these particles, we have attempted to summarize all of the mineralogical data on identified CPA's published since about 1976.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The verdine facies of coastal marine tropical sediments shows a common variety characterized by a 1:1 newly-discovered dioctahedral-trioctahedral mineral. Although sometimes nearly pure, this mineral is generally admixed with a chlorite, a pyrophyllite, and a 7/14 Å mixed-layer. The rare variety is mostly composed of a green component intermediate between a smectite and a swelling chlorite. There is an abridged English version. -English summary

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controversy on how to interpret the ages of lunar highland breccias has recently been discussed by James [1]. Are the measured ages testimony of true events in lunar history; do they represent the age of the ancient crustal rocks, mixed ages of unequilibrated matrix-phenocryst relationships, or merely thermal events subsequent to the formational event ? It is certain from analyses of terrestrial impact melt breccias that the melt matrix of whole impact melt sheets is isotopically equilibrated due to the extensive mixing process of the early cratering stage [2,3]. It has been shown that isotopic equilibration takes place between impact melt matrix and target rock clasts therein, with the intensity of isotopic exchange depending on the degree of shock metamorphism, thermal metamorphism and the size of the clasts [4]. Therefore, impact melt breccias - if they are relatively clast-poor and mineralogically well studied - can be considered to be the most reliable source for information on the impact history of the lunar highland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successive alkalinity producing systems (SAPSs) are widely used for treating acid mine drainage (AMD) and alleviating clogging commonly occurring in limestone systems due to an amorphous ferric precipitate. In this study, iron dust, bone char, micrite and their admixtures were used to treat arseniccontaining AMD. A particular interest was devoted to arsenic removal performance, mineralogical constraints on arsenic retention ability and permeability variation during column experiment for 140 days. The results showed that the sequence of the arsenic removal capacity was as follows: bone char > micrite > iron dust. The combination of 20% v/v iron dust and 80% v/v bone char/micrite columns can achieve better hydraulic conductivity and phosphorus-retention capacity than single micrite and bone char columns. The addition of iron dust created reductive environment and resulted in the transformation of coating material from colloidal phase to secondary mineral phase, such as green rust and phosphoerrite, which obviously ameliorates hydraulic conductivity of systems. The sequential extraction experiments indicated that the stable fractions of arsenic in columns were enhanced with help of iron dust compared to single bone char and micrite columns. A combination of iron dust and micrite/bone char represented a potential SAPS for treating As-containing AMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic behavior of soils can seriously hamper the performance of geophysical sensors. Currently, we have little understanding of the types of minerals responsible for the magnetic behavior, as well as their distribution in space and evolution through time. This study investigated the magnetic characteristics and mineralogy of Fe-rich soils developed on basaltic substrate in Hawaii. We measured the spatial distribution of magnetic susceptibility (χlf) and frequency dependence (χfd%) across three test areas in a well-developed eroded soil on Kaho'olawe and in two young soils on the Big Island of Hawaii. X-ray diffraction spectroscopy, x-ray fluorescence spectroscopy (XFCF), chemical dissolution, thermal analysis, and temperature-dependent magnetic studies were used to characterize soil development and mineralogy for samples from soil pits on Kaho'olawe, surface samples from all three test areas, and unweathered basalt from the Big Island of Hawaii. The measurements show a general increase in magnetic properties with increasing soil development. The XRF Fe data ranged from 13% for fresh basalt and young soils on the Big Island to 58% for material from the B horizon of Kaho'olawe soils. Dithionite-extractable and oxalate-extractable Fe percentages increase with soil development and correlate with χlf-and χfd%, respectively. Results from the temperature-dependent susceptibility measurements show that the high soil magnetic properties observed in geophysical surveys in Kaho'olawe are entirely due to neoformed minerals. The results of our studies have implications for the existing soil survey of Kaho'olawe and help identify methods to characterize magnetic minerals in tropical soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal transformations of natural calcium oxalate dihydrate known in mineralogy as weddellite have been undertaken using a combination of Raman microscopy and infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG–MS identified three mass loss steps at 114, 422 and 592 °C. In the first mass loss step water is evolved only, in the second and third steps carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Weddellite is the phase in the temperature range up to the pre-dehydration temperature of 97 °C. At this temperature, the phase formed is whewellite (calcium oxalate monohydrate) and above 114 °C the phase is the anhydrous calcium oxalate. Above 422 °C, calcium carbonate is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 650 °C. Changes in the position and intensity of the C=O and C---C stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This book analyses and refines the arguments for and against retrospective rule making, concluding that there is one really strong argument against it: the expectation that, if an individual's actions are considered by a future court, the legal consequences of that action will be determined by the law that was discoverable at the time the action was performed. This argument, which goes to the heart of the rule of law, is generally determinative. However, in some cases the argument does not run and this book suggests that, in some areas of law, reliance should be actively discouraged by prospective warnings that the law is subject to change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four nickel carbonate-bearing minerals from Australia have been investigated to study the effect of Ni for Mg substitution. The spectra of nullaginite, zaratite, widgiemoolthalite and takovite show three main features in the range of 26,720–25,855 cm−1 (ν1-band), 15,230–14,740 cm−1 (ν2-band) and 9,200–9,145 cm−1 (ν3-band) which are characteristic of divalent nickel in six-fold coordination. The Crystal Field Stabilization Energy (CFSE) of Ni2+ in the four carbonates is calculated from the observed 3A2g(3F) → 3T2g(3F) transition. CFSE is dependent on mineralogy, crystallinity and chemical composition (Al/Mg-content). The splitting of the ν1- and ν3-bands and non-Gaussian shape of ν3-band in the minerals are the effects of Ni-site distortion from regular octahedral. The effect of structural cation substitutions (Mg2+, Ni2+, Fe2+ and trivalent cations, Al3+, Fe3+) in the carbonate minerals is noticed on band shifts. Thus, electronic bands in the UV–Vis–NIR spectra and the overtones and combination bands of OH and carbonate ion in NIR show shifts to higher wavenumbers, particularly for widgiemoolthalite and takovite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sascha-Pelligrini low-sulphidation epithermal system is located on the western edge of the Deseado Massif, Santa Cruz Province, Argentina. Outcrop sampling has returned values of up to 160g/t gold and 796g/t silver, with Mirasol Resources and Coeur D.Alene Mines currently exploring the property. Detailed mapping of the volcanic stratigraphy has defined three units that comprise the middle Jurassic Chon Aike Formation and two units that comprise the upper Jurassic La Matilde Formation. The Chon Aike Formation consists of rhyodacite ignimbrites and tuffs, with the La Matilde Formation including rhyolite ash and lithic tuffs. The volcanic sequence is intruded by a large flow-banded rhyolite dome, with small, spatially restricted granodiorite dykes and sills cropping out across the study area. ASTER multispectral mineral mapping, combined with PIMA (Portable Infrared Mineral Analyser) and XRD (X-ray diffraction) analysis defines an alteration pattern that zones from laumontite-montmorillonite, to illite-pyritechlorite, followed by a quartz-illite-smectite-pyrite-adularia vein selvage. Supergene kaolinite and steam-heated acid-sulphate kaolinite-alunite-opal alteration horizons crop out along the Sascha Vein trend and Pelligrini respectively. Paragenetically, epithermal veining varies from chalcedonic to saccharoidal with minor bladed textures, colloform/crustiform-banded with visible electrum and acanthite, crustiform-banded grey chalcedonic to jasperoidal with fine pyrite, and crystalline comb quartz. Geothermometry of mineralised veins constrains formation temperatures from 174.8 to 205.1¡ÆC and correlates with the stability field for the interstratified illite-smectite vein selvage. Vein morphology, mineralogy and associated alteration are controlled by host rock rheology, permeability, and depth of the palaeo-water table. Mineralisation within ginguro banded veins resulted from fluctuating fluid pH associated with selenide-rich magmatic pulses, pressure release boiling and wall-rock silicate buffering. The study of the Sascha-Pelligrini epithermal system will form the basis for a deposit-specific model helping to clarify the current understanding of epithermal deposits, and may serve as a template for exploration of similar epithermal deposits throughout Santa Cruz.