32 resultados para Mesozoic volcanism
em Queensland University of Technology - ePrints Archive
Resumo:
Voluminous (≥3·9 × 105 km3), prolonged (∼18 Myr) explosive silicic volcanism makes the mid-Tertiary Sierra Madre Occidental province of Mexico one of the largest intact silicic volcanic provinces known. Previous models have proposed an assimilation–fractional crystallization origin for the rhyolites involving closed-system fractional crystallization from crustally contaminated andesitic parental magmas, with <20% crustal contributions. The lack of isotopic variation among the lower crustal xenoliths inferred to represent the crustal contaminants and coeval Sierra Madre Occidental rhyolite and basaltic andesite to andesite volcanic rocks has constrained interpretations for larger crustal contributions. Here, we use zircon age populations as probes to assess crustal involvement in Sierra Madre Occidental silicic magmatism. Laser ablation-inductively coupled plasma-mass spectrometry analyses of zircons from rhyolitic ignimbrites from the northeastern and southwestern sectors of the province yield U–Pb ages that show significant age discrepancies of 1–4 Myr compared with previously determined K/Ar and 40Ar/39Ar ages from the same ignimbrites; the age differences are greater than the errors attributable to analytical uncertainty. Zircon xenocrysts with new overgrowths in the Late Eocene to earliest Oligocene rhyolite ignimbrites from the northeastern sector provide direct evidence for some involvement of Proterozoic crustal materials, and, potentially more importantly, the derivation of zircon from Mesozoic and Eocene age, isotopically primitive, subduction-related igneous basement. The youngest rhyolitic ignimbrites from the southwestern sector show even stronger evidence for inheritance in the age spectra, but lack old inherited zircon (i.e. Eocene or older). Instead, these Early Miocene ignimbrites are dominated by antecrystic zircons, representing >33 to ∼100% of the dated population; most antecrysts range in age between ∼20 and 32 Ma. A sub-population of the antecrystic zircons is chemically distinct in terms of their high U (>1000 ppm to 1·3 wt %) and heavy REE contents; these are not present in the Oligocene ignimbrites in the northeastern sector of the Sierra Madre Occidental. The combination of antecryst zircon U–Pb ages and chemistry suggests that much of the zircon in the youngest rhyolites was derived by remelting of partially molten to solidified igneous rocks formed during preceding phases of Sierra Madre Occidental volcanism. Strong Zr undersaturation, and estimations for very rapid dissolution rates of entrained zircons, preclude coeval mafic magmas being parental to the rhyolite magmas by a process of lower crustal assimilation followed by closed-system crystal fractionation as interpreted in previous studies of the Sierra Madre Occidental rhyolites. Mafic magmas were more probably important in providing a long-lived heat and material flux into the crust, resulting in the remelting and recycling of older crust and newly formed igneous materials related to Sierra Madre Occidental magmatism.
Resumo:
The volcanic succession on Montserrat provides an opportunity to examine the magmatic evolution of island arc volcanism over a ∼2.5 Ma period, extending from the andesites of the Silver Hills center, to the currently active Soufrière Hills volcano (February 2010). Here we present high-precision double-spike Pb isotope data, combined with trace element and Sr-Nd isotope data throughout this period of Montserrat's volcanic evolution. We demonstrate that each volcanic center; South Soufrière Hills, Soufrière Hills, Centre Hills and Silver Hills, can be clearly discriminated using trace element and isotopic parameters. Variations in these parameters suggest there have been systematic and episodic changes in the subduction input. The SSH center, in particular, has a greater slab fluid signature, as indicated by low Ce/Pb, but less sediment addition than the other volcanic centers, which have higher Th/Ce. Pb isotope data from Montserrat fall along two trends, the Silver Hills, Centre Hills and Soufrière Hills lie on a general trend of the Lesser Antilles volcanics, whereas SSH volcanics define a separate trend. The Soufrière Hills and SSH volcanic centers were erupted at approximately the same time, but retain distinctive isotopic signatures, suggesting that the SSH magmas have a different source to the other volcanic centers. We hypothesize that this rapid magmatic source change is controlled by the regional transtensional regime, which allowed the SSH magma to be extracted from a shallower source. The Pb isotopes indicate an interplay between subduction derived components and a MORB-like mantle wedge influenced by a Galapagos plume-like source.
Resumo:
Cenozoic extension in western Mexico has been divided into two episodes separated by the change from convergence to oblique divergence at the plate boundary. The Gulf Extensional Province is thought to have started once subduction ended at ~12.5 Ma whereas early extension is classified as Basin and Range. Mid-Miocene volcanism of the Comondú group has been considered as a subduction-related arc, whereas post ~12.5 Ma volcanism would be extension-related. Our new integration of the continental onshore and offshore geology of the south-east Gulf region, backed by tens of Ar-Ar and U-Pb ages and geochemical studies, document an early-mid Miocene rifting and extension-related bimodal to andesitic magmatism prior to subduction termination. Between ~21 and 11 Ma a system of NNW-SSE high-angle extensional faults rifted the western side of the Sierra Madre Occidental (SMO) ignimbrite plateau. In Nayarit, rhyolitic domes and some basalts were emplaced along this extensional belt at 18-17 Ma. These rocks show strong antecrystic inheritance but an absence of Mesozoic and older xenocrysts, suggesting a genesis in the mid-upper crust triggered by extension-induced basaltic influx. In Sinaloa, large grabens were floored by huge dome complexes at ~21-17 Ma and filled by continental sediments with interlayered basalts dated at 15 Ma. Mid-Miocene volcanism, including the largely volcaniclastic Comondú strata in Baja California, was thus emplaced in rift basins and appears associated to decompression melting rather than subduction. Along the coast, flat-lying basaltic lava flows dated at 11-10 Ma are exposed just above the present sea level. Here crustal thickness is 25-20 Km, almost half that in the core of the SMO, implying significant lithosphere stretching before ~11 Ma. This mafic pulse, with relatively high Ti but still clear Nb-Ta negative spikes, may be related to the detachment of the lower part of the subducted slab, allowing asthenosphere to flow into parts of the mantle previously fluxed by subduction fluids. Very uniform OIB-like lavas appear in late Pliocene and Pleistocene, only 18 m.y. after the onset of rifting and ~9 m.y. after the end of subduction. Our study shows that rifting began much earlier than Late Miocene and progressively overwhelmed subduction in generating magmatism.
Resumo:
This chapter describes the later Mesozoic history of Queensland, when the broad epicratonic basins that underlie most of the state west of the Great Dividing Range received the greater part of their sediment infill after ~210 Ma(middle Norian). The final major orogenic event—the Hunter Bowen Orogeny—had abated in the Tasmanides. These basins preserve relatively thin sedimentary successions that extend over about two-thirds of the area of the state...
Resumo:
Although Basin and Range–style extension affected large areas of western Mexico after the Late Eocene, most consider that extension in the Gulf of California region began as subduction waned and ended ca. 14–12.5 Ma. A general consensus also exists in considering Early and Middle Miocene volcanism of the Sierra Madre Occidental and Comondú Group as subduction related, whereas volcanism after ca. 12.5 Ma is extension related. Here we present a new regional geologic study of the eastern Gulf of California margin in the states of Nayarit and Sinaloa, Mexico, backed by 43 new Ar-Ar and U-Pb mineral ages, and geochemical data that document an earlier widespread phase of extension. This extension across the southern and central Gulf Extensional Province began between Late Oligocene and Early Miocene time, but was focused in the region of the future Gulf of California in the Middle Miocene. Late Oligocene to Early Miocene rocks across northern Nayarit and southern Sinaloa were affected by major approximately north-south– to north-northwest– striking normal faults prior to ca. 21 Ma. Between ca. 21 and 11 Ma, a system of north-northwest–south-southeast high angle extensional faults continued extending the southwestern side of the Sierra Madre Occidental. Rhyolitic domes, shallow intrusive bodies, and lesser basalts were emplaced along this extensional belt at 20–17 Ma. Rhyolitic rocks, in particular the domes and lavas, often show strong antecrystic inheritance but only a few Mesozoic or older xenocrysts, suggesting silicic magma generation in the mid-upper crust triggered by an extension induced basaltic infl ux. In northern Sinaloa, large grabens were occupied by huge volcanic dome complexes ca. 21–17 Ma and filled by continental sediments with interlayered basalts dated as 15–14 Ma, a stratigraphy and timing very similar to those found in central Sonora (northeastern Gulf of California margin). Early to Middle Miocene volcanism occurred thus in rift basins, and was likely associated with decompression melting of upper mantle (inducing crustal partial melting) rather than with fluxing by fluids from the young and slow subducting microplates. Along the eastern side of the Gulf of California coast, from Farallón de San Ignacio island offshore Los Mochis, Sinaloa, to San Blas, Nayarit, a strike distance of >700 km, flat lying basaltic lavas dated as ca. 11.5–10 Ma are exposed just above the present sea level. Here crustal thickness is almost half that in the unextended core of the adjacent Sierra Madre Occidental, implying signifi cant lithosphere stretching before ca. 11 Ma. This mafic pulse, with subdued Nb-Ta negative spikes, may be related to the detachment of the lower part of the subducted slab, allowing an upward asthenospheric flow into an upper mantle previously modified by fluid fluxes related to past subduction. Widespread eruption of very uniform oceanic island basalt–like lavas occurred by the late Pliocene and Pleistocene, only 20 m.y. after the onset of rifting and ~9 m.y. after the end of subduction, implying that preexisting subduction-modified mantle had now become isolated from melt source regions. Our study shows that rifting across the southern-central Gulf Extensional Province began much earlier than the Late Miocene and provided a fundamental control on the style and composition of volcanism from at least 30 Ma. We envision a sustained period of lithospheric stretching and magmatism during which the pace and breadth of extension changed ca. 20–18 Ma to be narrower, and again after ca. 12.5 Ma, when the kinematics of rifting became more oblique.
Resumo:
The thick piles of late-Archean volcaniclastic sedimentary successions that overlie the voluminous greenstone units of the eastern Yilgarn Craton, Western Australia, record the important transition from the cessation in mafic-ultramafic volcanism to cratonisation between about 2690 and 2655 Ma. Unfortunately, an inability to clearly subdivide the superficially similar sedimentary successions and correlate them between the various geological terranes and domains of the eastern Yilgarn Craton has led to uncertainty about the timing and nature of the region's palaeogeographic and palaeotectonic evolution. Here, we present the results of some 2025 U–Pb laser-ablation-ICP-MS analyses and 323 Sensitive High-Resolution Ion Microprobe (SHRIMP) analyses of detrital zircons from 14 late-Archean felsic clastic successions of the eastern Yilgarn Craton, which have enabled correlation of clastic successions. The results of our data, together with those compiled from previous studies, show that the post-greenstone sedimentary successions include two major cycles that both commenced with voluminous pyroclastic volcanism and ended with widespread exhumation and erosion associated with granite emplacement. Cycle One commences with an influx of rapidly reworked feldspar-rich pyroclastic debris. These units, here-named the Early Black Flag Group, are dominated by a single population of detrital zircons with an average age of 2690–2680 Ma. Thick (up to 2 km) dolerite bodies, such as the Golden Mile Dolerite, intrude the upper parts of the Early Black Flag Group at about 2680 Ma. Incipient development of large granite domes during Cycle One created extensional basins predominantly near their southeastern and northwestern margins (e.g., St Ives, Wallaby, Kanowna Belle and Agnew), into which the Early Black Flag Group and overlying coarse mafic conglomerate facies of the Late Black Flag Group were deposited. The clast compositions and detrital-zircon ages of the late Black Flag Group detritus match closely the nearby and/or stratigraphically underlying successions, thus suggesting relatively local provenance. Cycle Two involved a similar progression to that observed in Cycle One, but the age and composition of the detritus were notably different. Deposition of rapidly reworked quartz-rich pyroclastic deposits dominated by a single detrital-zircon age population of 2670–2660 Ma heralded the beginning of Cycle Two. These coarse-grained quartz-rich units, are name here the Early Merougil Group. The mean ages of the detrital zircons from the Early Merougil Group match closely the age of the peak in high-Ca (quartz-rich) granite magmatism in the Yilgarn Craton and thus probably represent the surface expression of the same event. Successions of the Late Merougil Group are dominated by coarse felsic conglomerate with abundant volcanic quartz. Although the detrital zircons in these successions have a broad spread of age, the principal sub-populations have ages of about 2665 Ma and thus match closely those of the Early Merougil Group. These successions occur most commonly at the northwestern and southeastern margins of the granite batholiths and thus are interpreted to represent resedimented units dominted by the stratigraphically underlying packages of the Early Merougil Group. The Kurrawang Group is the youngest sedimentary units identified in this study and is dominated by polymictic conglomerate with clasts of banded iron formation (BIF), granite and quartzite near the base and quartz-rich sandstone units containing detrital zircons aged up to 3500 Ma near the top. These units record provenance from deeper and/or more-distal sources. We suggest here that the principal driver for the major episodes of volcanism, sedimentation and deformation associated with basin development was the progressive emplacement of large granite batholiths. This interpretation has important implication for palaeogeographic and palaeotectonic evolution of all late-Archean terranes around the world.
Resumo:
A long-period magnetotelluric (MT) survey, with 39 sites covering an area of 270 by 150 km, has identified melt within the thinned lithosphere of Pleistocene-Holocene Newer Volcanics Province (NVP) in southeast Australia, which has been variously attributed to mantle plume activity or edge-driven mantle convection. Two-dimensional inversions from the MT array imaged a low-resistivity anomaly (10-30Ωm) beneath the NVP at ∼40-80 km depth, which is consistent with the presence of ∼1.5-4% partial melt in the lithosphere, but inconsistent with elevated iron content, metasomatism products or a hot spot. The conductive zone is located within thin juvenile oceanic mantle lithosphere, which was accreted onto thicker Proterozoic continental mantle lithosphere. We propose that the NVP owes its origin to decompression melting within the asthenosphere, promoted by lithospheric thickness variations in conjunction with rapid shear, where asthenospheric material is drawn by shear flow at a "step" at the base of the lithosphere.
Resumo:
The study reported here, constitutes a full review of the major geological events that have influenced the morphological development of the southeast Queensland region. Most importantly, it provides evidence that the region’s physiography continues to be geologically ‘active’ and although earthquakes are presently few and of low magnitude, many past events and tectonic regimes continue to be strongly influential over drainage, morphology and topography. Southeast Queensland is typified by highland terrain of metasedimentary and igneous rocks that are parallel and close to younger, lowland coastal terrain. The region is currently situated in a passive margin tectonic setting that is now under compressive stress, although in the past, the region was subject to alternating extensional and compressive regimes. As part of the investigation, the effects of many past geological events upon landscape morphology have been assessed at multiple scales using features such as the location and orientation of drainage channels, topography, faults, fractures, scarps, cleavage, volcanic centres and deposits, and recent earthquake activity. A number of hypotheses for local geological evolution are proposed and discussed. This study has also utilised a geographic information system (GIS) approach that successfully amalgamates the various types and scales of datasets used. A new method of stream ordination has been developed and is used to compare the orientation of channels of similar orders with rock fabric, in a topologically controlled approach that other ordering systems are unable to achieve. Stream pattern analysis has been performed and the results provide evidence that many drainage systems in southeast Queensland are controlled by known geological structures and by past geological events. The results conclude that drainage at a fine scale is controlled by cleavage, joints and faults, and at a broader scale, large river valleys, such as those of the Brisbane River and North Pine River, closely follow the location of faults. These rivers appear to have become entrenched by differential weathering along these planes of weakness. Significantly, stream pattern analysis has also identified some ‘anomalous’ drainage that suggests the orientations of these watercourses are geologically controlled, but by unknown causes. To the north of Brisbane, a ‘coastal drainage divide’ has been recognized and is described here. The divide crosses several lithological units of different age, continues parallel to the coast and prevents drainage from the highlands flowing directly to the coast for its entire length. Diversion of low order streams away from the divide may be evidence that a more recent process may be the driving force. Although there is no conclusive evidence for this at present, it is postulated that the divide may have been generated by uplift or doming associated with mid-Cenozoic volcanism or a blind thrust at depth. Also north of Brisbane, on the D’Aguilar Range, an elevated valley (the ‘Kilcoy Gap’) has been identified that may have once drained towards the coast and now displays reversed drainage that may have resulted from uplift along the coastal drainage divide and of the D’Aguilar blocks. An assessment of the distribution and intensity of recent earthquakes in the region indicates that activity may be associated with ancient faults. However, recent movement on these faults during these events would have been unlikely, given that earthquakes in the region are characteristically of low magnitude. There is, however, evidence that compressive stress is building and being released periodically and ancient faults may be a likely place for this stress to be released. The relationship between ancient fault systems and the Tweed Shield Volcano has also been discussed and it is suggested here that the volcanic activity was associated with renewed faulting on the Great Moreton Fault System during the Cenozoic. The geomorphology and drainage patterns of southeast Queensland have been compared with expected morphological characteristics found at passive and other tectonic settings, both in Australia and globally. Of note are the comparisons with the East Brazilian Highlands, the Gulf of Mexico and the Blue Ridge Escarpment, for example. In conclusion, the results of the study clearly show that, although the region is described as a passive margin, its complex, past geological history and present compressive stress regime provide a more intricate and varied landscape than would be expected along typical passive continental margins. The literature review provides background to the subject and discusses previous work and methods, whilst the findings are presented in three peer-reviewed, published papers. The methods, hypotheses, suggestions and evidence are discussed at length in the final chapter.
Resumo:
The Cainozoic alluvium of the Condamine River valley is interpreted to consist of sediments deposited as floodplain and sheetwash deposits in bedrock valleys eroded into Mesozoic sedimentary rocks and tertiary volcanics. A maximum recorded sediment accumulation of 134 m is centred just south of Dalby. The lower section ofboth the flood plain and sheetwash alluvium is composed of variegated sandy and clayey sediments and the upper section of brown and grey sandy and clayey sediments.
Resumo:
In their correspondence, He and colleagues question our conclusion of little or no uplift preceding Emeishan volcanism that we reported in our letter1. Debate concerns the nature of the contact between the Maokou limestone and Emeishan volcanics, the depositional environment and volumetric significance of mafic hydromagmatic deposits (MHDs), and evidence for symmetrical domal thinning. MHDs in the Daqiao section are separated from the Maokou limestone by 100 m of subaerial basaltic lavas, but elsewhere MHDs — previously interpreted as basal conglomerates2, 3 — directly overlie the Maokou2, 3. MHDs thus feature strongly in basal sections of the Emeishan lava succession, as also recently shown4 elsewhere in the Emeishan. An irregular surface at the top of the Maokou limestone has been interpreted as an erosional unconformity2, 3, but clastic deposits presented as evidence of this erosion2, 3 are MHDs produced by explosive magma–water interaction1. A clear demonstration that this irregular top surface is an erosional truncation of limestone reef facies (slope/rim, flat, lagoonal) is currently lacking, but is critical because reefs and carbonate platforms show considerable natural relief of tens of metres. The persistent hot, wet climate since the Oligocene has produced well-developed weathering profiles on exposed Palaeozoic marine sedimentary sequences5, but weathering and karst relief of the uppermost Maokou limestone underlying the flood basalts have not been properly documented, nor shown to be of middle Permian age and immediately preceding emplacement of the large igneous province.
Resumo:
The New Hebrides Island Arc, an intra-oceanic island chain in the southwest Pacific, is formed by subduction of the Indo-Australian Plate beneath the Pacific Plate. The southern end of the New Hebrides Island Arc is an ideal location to study the magmatic and tectonic interaction of an emerging island arc as this part of the island chain is less than 3 million years old. A tectonically complex island arc, it exhibits a change in relative subduction rate from ~12cm/yr to 6 cm/yr before transitioning to a left-lateral strike slip zone at its southern end. Two submarine volcanic fields, Gemini-Oscostar and Volsmar, occur at this transition from normal arc subduction to sinistral strike slip movement. Multi-beam bathymetry and dredge samples collected during the 2004 CoTroVE cruise onboard the RV Southern Surveyor help define the relationship between magmatism and tectonics, and the source for these two submarine volcanic fields. Gemini-Oscostar volcanic field (GOVF), dominated by northwest-oriented normal faults, has mature polygenetic stratovolcanoes with evidence for explosive subaqueous eruptions and homogeneous monogenetic scoria cones. Volsmar volcanic field (VVF), located 30 km south of GOVF, exhibits a conjugate set of northwest and eastwest-oriented normal faults, with two polygenetic stratovolcanoes and numerous monogenetic scoria cones. A deep water caldera provides evidence for explosive eruptions at 1500m below sea level in the VVF. Both volcanic fields are dominated by low-K island arc tholeiites and basaltic andesites with calcalkalic andesite and dacite being found only in the GOVF. Geochemical signatures of both volcanic fields continue the along-arc trend of decreasing K2O with both volcanic fields being similar to the New Hebrides central chain lavas. Lavas from both fields display a slight depletion in high field strength elements and heavy rare earth elements, and slight enrichments in large-ion lithophile elements and light rare earth elements with respect to N-MORB mantle. Sr and Nd isotope data correlate with heavy rare earth and high field strength element data to show that both fields are derived from depleted mantle. Pb isotopes define Pacific MORB mantle sources and are consistent with isotopic variation along the New Hebrides Island Arc. Pb isotopes show no evidence for sediment contamination; the subduction component enrichment is therefore a slab-derived enrichment. There is a subtle spatial variation in source chemistry which sees a northerly trend of decreasing enrichment of slab-derived fluids.