722 resultados para Memory models

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of joint identification of infinite-frequency added mass and fluid memory models of marine structures from finite frequency data. This problem is relevant for cases where the code used to compute the hydrodynamic coefficients of the marine structure does not give the infinite-frequency added mass. This case is typical of codes based on 2D-potential theory since most 3D-potential-theory codes solve the boundary value associated with the infinite frequency. The method proposed in this paper presents a simpler alternative approach to other methods previously presented in the literature. The advantage of the proposed method is that the same identification procedure can be used to identify the fluid-memory models with or without having access to the infinite-frequency added mass coefficient. Therefore, it provides an extension that puts the two identification problems into the same framework. The method also exploits the constraints related to relative degree and low-frequency asymptotic values of the hydrodynamic coefficients derived from the physics of the problem, which are used as prior information to refine the obtained models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The motion response of marine structures in waves can be studied using finite-dimensional linear-time-invariant approximating models. These models, obtained using system identification with data computed by hydrodynamic codes, find application in offshore training simulators, hardware-in-the-loop simulators for positioning control testing, and also in initial designs of wave-energy conversion devices. Different proposals have appeared in the literature to address the identification problem in both time and frequency domains, and recent work has highlighted the superiority of the frequency-domain methods. This paper summarises practical frequency-domain estimation algorithms that use constraints on model structure and parameters to refine the search of approximating parametric models. Practical issues associated with the identification are discussed, including the influence of radiation model accuracy in force-to-motion models, which are usually the ultimate modelling objective. The illustration examples in the paper are obtained using a freely available MATLAB toolbox developed by the authors, which implements the estimation algorithms described.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article describes a Matlab toolbox for parametric identification of fluid-memory models associated with the radiation forces ships and offshore structures. Radiation forces are a key component of force-to-motion models used in simulators, motion control designs, and also for initial performance evaluation of wave-energy converters. The software described provides tools for preparing non-parmatric data and for identification with automatic model-order detection. The identification problem is considered in the frequency domain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate potentially dissociable recognition memory responses in the hippocampus and perirhinal cortex, fMRI studies have often used confidence ratings as an index of memory strength. Confidence ratings, although correlated with memory strength, also reflect sources of variability, including task-irrelevant item effects and differences both within and across individuals in terms of applying decision criteria to separate weak from strong memories. We presented words one, two, or four times at study in each of two different conditions, focused and divided attention, and then conducted separate fMRI analyses of correct old responses on the basis of subjective confidence ratings or estimates from single- versus dual-process recognition memory models. Overall, the effect of focussing attention on spaced repetitions at study manifested as enhanced recognition memory performance. Confidence- versus model-based analyses revealed disparate patterns of hippocampal and perirhinal cortex activity at both study and test and both within and across hemispheres. The failure to observe equivalent patterns of activity indicates that fMRI signals associated with subjective confidence ratings reflect additional sources of variability. The results are consistent with predictions of single-process models of recognition memory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We used event-related fMRI to investigate the neural correlates of encoding strength and word frequency effects in recognition memory. At test, participants made Old/New decisions to intermixed low (LF) and high frequency (HF) words that had been presented once or twice at study and to new, unstudied words. The Old/New effect for all hits vs. correctly rejected unstudied words was associated with differential activity in multiple cortical regions, including the anterior medial temporal lobe (MTL), hippocampus, left lateral parietal cortex and anterior left inferior prefrontal cortex (LIPC). Items repeated at study had superior hit rates (HR) compared to items presented once and were associated with reduced activity in the right anterior MTL. By contrast, other regions that had shown conventional Old/New effects did not demonstrate modulation according to memory strength. A mirror effect for word frequency was demonstrated, with the LF word HR advantage associated with increased activity in the left lateral temporal cortex. However, none of the regions that had demonstrated Old/New item retrieval effects showed modulation according to word frequency. These findings are interpreted as supporting single-process memory models proposing a unitary strength-like memory signal and models attributing the LF word HR advantage to the greater lexico-semantic context-noise associated with HF words due to their being experienced in many pre-experimental contexts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is recognised that individuals do not always respond honestly when completing psychological tests. One of the foremost issues for research in this area is the inability to detect individuals attempting to fake. While a number of strategies have been identified in faking, a commonality of these strategies is the latent role of long term memory. Seven studies were conducted in order to examine whether it is possible to detect the activation of faking related cognitions using a lexical decision task. Study 1 found that engagement with experiential processing styles predicted the ability to fake successfully, confirming the role of associative processing styles in faking. After identifying appropriate stimuli for the lexical decision task (Studies 2A and 2B), Studies 3 to 5 examined whether a cognitive state of faking could be primed and subsequently identified, using a lexical decision task. Throughout the course of these studies, the experimental methodology was increasingly refined in an attempt to successfully identify the relevant priming mechanisms. The results were consistent and robust throughout the three priming studies: faking good on a personality test primed positive faking related words in the lexical decision tasks. Faking bad, however, did not result in reliable priming of negative faking related cognitions. To more completely address potential issues with the stimuli and the possible role of affective priming, two additional studies were conducted. Studies 6A and 6B revealed that negative faking related words were more arousing than positive faking related words, and that positive faking related words were more abstract than negative faking related words and neutral words. Study 7 examined whether the priming effects evident in the lexical decision tasks occurred as a result of an unintentional mood induction while faking the psychological tests. Results were equivocal in this regard. This program of research aligned the fields of psychological assessment and cognition to inform the preliminary development and validation of a new tool to detect faking. Consequently, an implicit technique to identify attempts to fake good on a psychological test has been identified, using long established and robust cognitive theories in a novel and innovative way. This approach represents a new paradigm for the detection of individuals responding strategically to psychological testing. With continuing development and validation, this technique may have immense utility in the field of psychological assessment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cued recall and item recognition are considered the standard episodic memory retrieval tasks. However, only the neural correlates of the latter have been studied in detail with fMRI. Using an event-related fMRI experimental design that permits spoken responses, we tested hypotheses from an auto-associative model of cued recall and item recognition [Chappell, M., & Humphreys, M. S. (1994). An auto-associative neural network for sparse representations: Analysis and application to models of recognition and cued recall. Psychological Review, 101, 103-128]. In brief, the model assumes that cues elicit a network of phonological short term memory (STM) and semantic long term memory (LTM) representations distributed throughout the neocortex as patterns of sparse activations. This information is transferred to the hippocampus which converges upon the item closest to a stored pattern and outputs a response. Word pairs were learned from a study list, with one member of the pair serving as the cue at test. Unstudied words were also intermingled at test in order to provide an analogue of yes/no recognition tasks. Compared to incorrectly rejected studied items (misses) and correctly rejected (CR) unstudied items, correctly recalled items (hits) elicited increased responses in the left hippocampus and neocortical regions including the left inferior prefrontal cortex (LIPC), left mid lateral temporal cortex and inferior parietal cortex, consistent with predictions from the model. This network was very similar to that observed in yes/no recognition studies, supporting proposals that cued recall and item recognition involve common rather than separate mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modelling how a word is activated in human memory is an important requirement for determining the probability of recall of a word in an extra-list cueing experiment. The spreading activation, spooky-action-at-a-distance and entanglement models have all been used to model the activation of a word. Recently a hypothesis was put forward that the mean activation levels of the respective models are as follows: Spreading � Entanglment � Spooking-action-at-a-distance This article investigates this hypothesis by means of a substantial empirical analysis of each model using the University of South Florida word association, rhyme and word norms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pavlovian fear conditioning is a robust technique for examining behavioral and cellular components of fear learning and memory. In fear conditioning, the subject learns to associate a previously neutral stimulus with an inherently noxious co-stimulus. The learned association is reflected in the subjects' behavior upon subsequent re-exposure to the previously neutral stimulus or the training environment. Using fear conditioning, investigators can obtain a large amount of data that describe multiple aspects of learning and memory. In a single test, researchers can evaluate functional integrity in fear circuitry, which is both well characterized and highly conserved across species. Additionally, the availability of sensitive and reliable automated scoring software makes fear conditioning amenable to high-throughput experimentation in the rodent model; thus, this model of learning and memory is particularly useful for pharmacological and toxicological screening. Due to the conserved nature of fear circuitry across species, data from Pavlovian fear conditioning are highly translatable to human models. We describe equipment and techniques needed to perform and analyze conditioned fear data. We provide two examples of fear conditioning experiments, one in rats and one in mice, and the types of data that can be collected in a single experiment. © 2012 Springer Science+Business Media, LLC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pavlovian fear conditioning, also known as classical fear conditioning is an important model in the study of the neurobiology of normal and pathological fear. Progress in the neurobiology of Pavlovian fear also enhances our understanding of disorders such as posttraumatic stress disorder (PTSD) and with developing effective treatment strategies. Here we describe how Pavlovian fear conditioning is a key tool for understanding both the neurobiology of fear and the mechanisms underlying variations in fear memory strength observed across different phenotypes. First we discuss how Pavlovian fear models aspects of PTSD. Second, we describe the neural circuits of Pavlovian fear and the molecular mechanisms within these circuits that regulate fear memory. Finally, we show how fear memory strength is heritable; and describe genes which are specifically linked to both changes in Pavlovian fear behavior and to its underlying neural circuitry. These emerging data begin to define the essential genes, cells and circuits that contribute to normal and pathological fear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cognitive modelling of phenomena in clinical practice allows the operationalisation of otherwise diffuse descriptive terms such as craving or flashbacks. This supports the empirical investigation of the clinical phenomena and the development of targeted treatment interventions. This paper focuses on the cognitive processes underpinning craving, which is recognised as a motivating experience in substance dependence. We use a high-level cognitive architecture, Interacting Cognitive Subsystems (ICS), to compare two theories of craving: Tiffany's theory, centred on the control of automated action schemata, and our own Elaborated Intrusion theory of craving. Data from a questionnaire study of the subjective aspects of everyday desires experienced by a large non-clinical population are presented. Both the data and the high-level modelling support the central claim of the Elaborated Intrusion theory that imagery is a key element of craving, providing the subjective experience and mediating much of the associated disruption of concurrent cognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New models of human cognition inspired by quantum theory could underpin information technologies that are better aligned with howwe recall information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Longitudinal data, where data are repeatedly observed or measured on a temporal basis of time or age provides the foundation of the analysis of processes which evolve over time, and these can be referred to as growth or trajectory models. One of the traditional ways of looking at growth models is to employ either linear or polynomial functional forms to model trajectory shape, and account for variation around an overall mean trend with the inclusion of random eects or individual variation on the functional shape parameters. The identification of distinct subgroups or sub-classes (latent classes) within these trajectory models which are not based on some pre-existing individual classification provides an important methodology with substantive implications. The identification of subgroups or classes has a wide application in the medical arena where responder/non-responder identification based on distinctly diering trajectories delivers further information for clinical processes. This thesis develops Bayesian statistical models and techniques for the identification of subgroups in the analysis of longitudinal data where the number of time intervals is limited. These models are then applied to a single case study which investigates the neuropsychological cognition for early stage breast cancer patients undergoing adjuvant chemotherapy treatment from the Cognition in Breast Cancer Study undertaken by the Wesley Research Institute of Brisbane, Queensland. Alternative formulations to the linear or polynomial approach are taken which use piecewise linear models with a single turning point, change-point or knot at a known time point and latent basis models for the non-linear trajectories found for the verbal memory domain of cognitive function before and after chemotherapy treatment. Hierarchical Bayesian random eects models are used as a starting point for the latent class modelling process and are extended with the incorporation of covariates in the trajectory profiles and as predictors of class membership. The Bayesian latent basis models enable the degree of recovery post-chemotherapy to be estimated for short and long-term followup occasions, and the distinct class trajectories assist in the identification of breast cancer patients who maybe at risk of long-term verbal memory impairment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As computers approach the physical limits of information storable in memory, new methods will be needed to further improve information storage and retrieval. We propose a quantum inspired vector based approach, which offers a contextually dependent mapping from the subsymbolic to the symbolic representations of information. If implemented computationally, this approach would provide exceptionally high density of information storage, without the traditionally required physical increase in storage capacity. The approach is inspired by the structure of human memory and incorporates elements of Gardenfors’ Conceptual Space approach and Humphreys et al.’s matrix model of memory.