128 resultados para Mediterranean Spanish urban system
em Queensland University of Technology - ePrints Archive
Resumo:
Transit Capacity Analysis critical to urban system Planning Design, Operation Productive Performance Analysis not so well detailed This study extends TRB’s & Vuchic’s work in this area
Resumo:
The computing tools and technologies with urban information systems are designed to enhance planners’ capability to deal with complex urban environments and to plan for prosperous and liveable communities. This paper examines the role of Online Urban Information Systems or in another words Internet based Geographic Information Systems as spatial decision support systems to aid local planning process. This paper introduces a prototype Internet GIS model that aims to integrate a public oriented interactive decision support system for urban planning process. This model, referred as a ‘Community based Internet GIS’, incorporates advanced information technologies and community involvement in decision making processes on the web environment. This innovative model has been recently applied to a pilot case in Tokyo and this paper concludes with the preliminary results of this project.
Resumo:
The broad definition of sustainable development at the early stage of its introduction has caused confusion and hesitation among local authorities and planning professionals. The main difficulties are experience in employing loosely-defined principles of sustainable development in setting policies and goals. The question of how this theory/rhetoric-practice gap could be filled will be the theme of this study. One of the widely employed sustainability accounting approaches by governmental organisations, triple bottom line, and applicability of this approach to sustainable urban development policies will be examined. When incorporating triple bottom line considerations with the environmental impact assessment techniques, the framework of GIS-based decision support system that helps decision-makers in selecting policy option according to the economic, environmental and social impacts will be introduced. In order to embrace sustainable urban development policy considerations, the relationship between urban form, travel pattern and socio-economic attributes should be clarified. This clarification associated with other input decision support systems will picture the holistic state of the urban settings in terms of sustainability. In this study, grid-based indexing methodology will be employed to visualise the degree of compatibility of selected scenarios with the designated sustainable urban future. In addition, this tool will provide valuable knowledge about the spatial dimension of the sustainable development. It will also give fine details about the possible impacts of urban development proposals by employing disaggregated spatial data analysis (e.g. land-use, transportation, urban services, population density, pollution, etc.). The visualisation capacity of this tool will help decision makers and other stakeholders compare and select alternative of future urban developments.
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systems-based decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
The Tamborine Mt area is a popular residential and tourist area in the Gold Coast hinterland, SE Qld. The 15km2 area occurs on elevated remnant Tertiary Basalts of the Beechmont Group, which comprise a number of mappable flow units originally derived from the Tweed volcanic centre to the south. The older Albert Basalt (Tertiary), which underlies the Beechmont Basalt at the southern end of the investigation area, is thought to be derived from the Focal Peak volcanic centre to the south west. The Basalts contain a locally significant ‘un-declared’ groundwater resource, which is utilised by the Tamborine Mt community for: • domestic purposes to supplement rainwater tank supplies, • commercial scale horticulture and • commercial export off-Mountain for bottled water. There is no reticulated water supply, and all waste water is treated on-site through domestic scale WTPs. Rainforest and other riparian ecosystems that attract residents and tourist dollars to the area, are also reliant on the groundwater that discharges to springs and surface streams on and around the plateau. Issues regarding a lack of compiled groundwater information, groundwater contamination, and groundwater sustainability are being investigated by QUT, utilising funding provided by the Federal Government’s ‘Caring for our Country’ programme through SEQ Catchments Ltd. The objectives of the two year project, which started in April 2009, are to: • Characterise the nature and condition of groundwater / surface water systems in the Tamborine Mountain area in terms of the issues being raised; • Engage and build capacity within the community to source local knowledge, encourage participation, raise awareness and improve understanding of the impacts of land and water use; • Develop a stand-alone 3D Visualisation model for dissemination into the community and use as a communication tool.
Resumo:
Chinese landscape architects are largely focused on objective practical solutions to environmental problems. In the West, theoretical landscape knowledge is largely conceptual and abstract. This research debated how Australian ecological concepts could or should be transposed to Chinese landscapes. This project responded to severe water and soil pollution issues in the estuarine and riparian zones of rivers flowing into Dongting Lake, in Yueyang City, Hunan Province. This work proposed a range of waterfront design innovations that challenged the notion of corridor as habitat, filter, barrier and conduit in a Chinese riparian context.
Resumo:
This paper provides a critique of the Water Sensitive Urban Design (WSUD) paradigm by discussing its congruence with an established sustainable design principle called 'whole system design'. It was found that WSUD is congruent with the whole system design approach as a philosophy, but not in practice. Future improvement of WSUD practice may depend on the adoption of a front-loaded, teamwork-based design and planning process that is embedded in the principle of whole system design.
Resumo:
In the context of increasing demand for potable water and the depletion of water resources, stormwater is a logical alternative. However, stormwater contains pollutants, among which metals are of particular interest due to their toxicity and persistence in the environment. Hence, it is imperative to remove toxic metals in stormwater to the levels prescribed by drinking water guidelines for potable use. Consequently, various techniques have been proposed, among which sorption using low cost sorbents is economically viable and environmentally benign in comparison to other techniques. However, sorbents show affinity towards certain toxic metals, which results in poor removal of other toxic metals. It was hypothesised in this study that a mixture of sorbents that have different metal affinity patterns can be used for the efficient removal of a range of toxic metals commonly found in stormwater. The performance of six sorbents in the sorption of Al, Cr, Cu, Pb, Ni, Zn and Cd, which are the toxic metals commonly found in urban stormwater, was investigated to select suitable sorbents for creating the mixtures. For this purpose, a multi criteria analytical protocol was developed using the decision making methods: PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) and GAIA (Graphical Analysis for Interactive Assistance). Zeolite and seaweed were selected for the creation of trial mixtures based on their metal affinity pattern and the performance on predetermined selection criteria. The metal sorption mechanisms employed by seaweed and zeolite were defined using kinetics, isotherm and thermodynamics parameters, which were determined using the batch sorption experiments. Additionally, the kinetics rate-limiting steps were identified using an innovative approach using GAIA and Spearman correlation techniques developed as part of the study, to overcome the limitation in conventional graphical methods in predicting the degree of contribution of each kinetics step in limiting the overall metal removal rate. The sorption kinetics of zeolite was found to be primarily limited by intraparticle diffusion followed by the sorption reaction steps, which were governed mainly by the hydrated ionic diameter of metals. The isotherm study indicated that the metal sorption mechanism of zeolite was primarily of a physical nature. The thermodynamics study confirmed that the energetically favourable nature of sorption increased in the order of Zn < Cu < Cd < Ni < Pb < Cr < Al, which is in agreement with metal sorption affinity of zeolite. Hence, sorption thermodynamics has an influence on the metal sorption affinity of zeolite. On the other hand, the primary kinetics rate-limiting step of seaweed was the sorption reaction process followed by intraparticle diffusion. The boundary layer diffusion was also found to limit the metal sorption kinetics at low concentration. According to the sorption isotherm study, Cd, Pb, Cr and Al were sorbed by seaweed via ion exchange, whilst sorption of Ni occurred via physisorption. Furthermore, ionic bonding is responsible for the sorption of Zn. The thermodynamics study confirmed that sorption by seaweed was energetically favourable in the order of Zn < Cu < Cd < Cr . Al < Pb < Ni. However, this did not agree with the affinity series derived for seaweed suggesting a limited influence of sorption thermodynamics on metal affinity for seaweed. The investigation of zeolite-seaweed mixtures indicated that mixing sorbents have an effect on the kinetics rates and the sorption affinity. Additionally, the theoretical relationships were derived to predict the boundary layer diffusion rate, intraparticle diffusion rate, the sorption reaction rate and the enthalpy of mixtures based on that of individual sorbents. In general, low coefficient of determination (R2) for the relationships between theoretical and experimental data indicated that the relationships were not statistically significant. This was attributed to the heterogeneity of the properties of sorbents. Nevertheless, in relative terms, the intraparticle diffusion rate, sorption reaction rate and enthalpy of sorption had higher R2 values than the boundary layer diffusion rate suggesting that there was some relationship between the former set of parameters of mixtures and that of sorbents. The mixture, which contained 80% of zeolite and 20% of seaweed, showed similar affinity for the sorption of Cu, Ni, Cd, Cr and Al, which was attributed to approximately similar sorption enthalpy of the metal ions. Therefore, it was concluded that the seaweed-zeolite mixture can be used to obtain the same affinity for various metals present in a multi metal system provided the metal ions have similar enthalpy during sorption by the mixture.
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systemsbased decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
Knowledge-based urban development (KBUD) has become the new development paradigm for the cities of the global knowledge economy era. Nevertheless, to date international KBUD performance analysis of prosperous knowledge cities is understudied. This paper, therefore, introduces the methodology and application of a novel performance analysis approach to comprehensively scrutinise the global perspectives on KBUD of cities—i.e., The KBUD Assessment Model (KBUD/AM). This indexing model puts 11 renowned knowledge cities—i.e., Birmingham, Boston, Brisbane, Helsinki, Istanbul, Manchester, Melbourne, San Francisco, Sydney, Toronto, Vancouver—under the KBUD microscope to provide a benchmarked international outlook. The results of the indexing provide internationally benchmarked snapshot of the degree of achievements in various KBUD performance areas. This paper discusses the further development avenues and potentialities of the index to become an integrated system for the policy-making circles of cities to benchmark themselves against their competitors and develop relevant KBUD policies.
Resumo:
The Asia‐Pacific region is characterised by rapid population growth and urbanisation. These trends often result in an increasing consumption of land, which in turn lead to spatially expansive and discontinuous urban development. As a consequence, local communities and the environment face strong pressures. Many cities in the region have developed policies to tackle the issue of rapid growth and its associated consequences, for example climate change. The broad aim of this paper is to identify the nature, trends and strategies of growth management in major Asia‐Pacific city‐regions, and their implications for natural resource management and infrastructure provision. More specifically, this research seeks to provide insights on sustainable urban development practice, particularly on the promotion of compact urbanisation within the Asia‐Pacific’s fastest growing regions. The methodology of the paper includes a detailed literature review and a comparative analysis of existing strategies and policies. The literature review focuses on the key concepts related to sustainable urban growth management. It also includes existing applications of urban growth management approaches and planning information system in managing growth. Following the literature review, the paper undertakes a comparative analysis of the strategies of major Asia‐Pacific city‐regions of Kuala Lumpur and Hong Kong in terms of their approaches to sustainable urban development. The findings of the paper provide a clear understanding of the necessity of sustainable urban development practices. It contributes to the development of a substantial base for further research. Ultimately, this research aims to shed light on sustainable urban development by providing insights on the management of growth, natural resources and urban infrastructures.
Resumo:
With the application of GIS methodologies to spatial data, researchers can now identify patterns of occurrence for many social problems including health-issues and crime. Further more, since this type of data also contains clues as to the underlying causes of social problems, it can be used to make well-educated and consequently, more effective policy decisions.
Resumo:
A successful urban management support system requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated transparent and open decision making mechanism. The paper emphasises the importance of integrated urban management to better tackle the climate change, and to achieve sustainable urban development and sound urban growth management. This paper introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for ubiquitous cities. The paper discusses the essential role of online collaborative decision making in urban and infrastructure planning, development and management, and advocates transparent, fully democratic and participatory mechanisms for an effective urban management system that is particularly suitable for ubiquitous cities. This paper also sheds light on some of the unclear processes of urban management of ubiquitous cities and online collaborative decision making, and reveals the key benefits of integrated and participatory mechanisms in successfully constructing sustainable ubiquitous cities.
Resumo:
The lack of satisfactory consensus for characterizing the system intelligence and structured analytical decision models has inhibited the developers and practitioners to understand and configure optimum intelligent building systems in a fully informed manner. So far, little research has been conducted in this aspect. This research is designed to identify the key intelligent indicators, and develop analytical models for computing the system intelligence score of smart building system in the intelligent building. The integrated building management system (IBMS) was used as an illustrative example to present a framework. The models presented in this study applied the system intelligence theory, and the conceptual analytical framework. A total of 16 key intelligent indicators were first identified from a general survey. Then, two multi-criteria decision making (MCDM) approaches, the analytic hierarchy process (AHP) and analytic network process (ANP), were employed to develop the system intelligence analytical models. Top intelligence indicators of IBMS include: self-diagnostic of operation deviations; adaptive limiting control algorithm; and, year-round time schedule performance. The developed conceptual framework was then transformed to the practical model. The effectiveness of the practical model was evaluated by means of expert validation. The main contribution of this research is to promote understanding of the intelligent indicators, and to set the foundation for a systemic framework that provide developers and building stakeholders a consolidated inclusive tool for the system intelligence evaluation of the proposed components design configurations.