2 resultados para Mayorazgos-Torrijos (Toledo)
em Queensland University of Technology - ePrints Archive
Resumo:
In this chapter Knight & Dooley discuss arts learning and issues of educational authenticity via children’s engagement with iPads (O’Mara & Laidlaw 2011; Shifflet, Toledo & Mattoon 2012). The chapter begins by considering common perceptions about art and how these popular beliefs and conditions affect and influence how children’s art is defined and valorized. The art produced by children using iPads is then discussed through key observations and reflections, and the chapter concludes with some recommendations when selecting apps for making art.
Resumo:
The ability of Escherichia coli to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic E. coli (UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that upaG is strongly associated with E. coli strains from the B2 and D phylogenetic groups, while deletion of upaG had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from E. coli that mediates aggregation, biofilm formation, and adhesion to various ECM proteins.