178 resultados para Mathematics, Applied
em Queensland University of Technology - ePrints Archive
Resumo:
The increased recognition of the theory in mathematics education is evident in numerous handbooks, journal articles, and other publications. For example, Silver and Herbst (2007) examined ―Theory in Mathematics Education Scholarship‖ in the Second Handbook of Research on Mathematics Teaching and Learning (Lester, 2007) while Cobb (2007) addressed ―Putting Philosophy to Work: Coping with Multiple Theoretical Perspectives‖ in the same handbook. And a central component of both the first and second editions of the Handbook of International Research in Mathematics Education (English, 2002; 2008) was ―advances in theory development.‖ Needless to say, the comprehensive second edition of the Handbook of Educational Psychology (Alexander & Winne, 2006) abounds with analyses of theoretical developments across a variety of disciplines and contexts. Numerous definitions of ―theory‖ appear in the literature (e.g., see Silver & Herbst, in Lester, 2007). It is not our intention to provide a ―one-size-fits-all‖ definition of theory per se as applied to our discipline; rather we consider multiple perspectives on theory and its many roles in improving the teaching and learning of mathematics in varied contexts.
Resumo:
Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.
Resumo:
Over the past decade, Thai schools have been encouraged by the Thai Ministry of Education to introduce more student-centred pedagogies such as cooperative learning into their classrooms (Carter, 2006). However, prior research has indicated that the implementation of cooperative learning into Thai schools has been confounded by cultural traditions endemic within Thai schools (Deveney, 2005). The purpose of the study was to investigate how 32 Grade 3 and 32 Grade 4 students enrolled in a Thai school engaged with cooperative learning in mathematics classrooms after they had been taught cooperative learning strategies and skills. These strategies and skills were derived from a conceptual framework that was the outcome of an analysis and synthesis of social learning, behaviourist and socio-cognitive theories found in the research literature. The intervention began with a two week program during which the students were introduced to and engaged in practicing a set of cooperative learning strategies and skills (3 times a week). Then during the next four weeks (3 times a week), these cooperative learning strategies and skills were applied in the contexts of two units of mathematics lessons. A survey of student attitudes with respect to their engagement in cooperative learning was conducted at the conclusion of the six-week intervention. The results from the analysis of the survey data were triangulated with the results derived from the analysis of data from classroom observations and teacher interviews. The analysis of data identified four complementary processes that need to be considered by Thai teachers attempting to implement cooperative learning into their mathematics classrooms. The paper concludes with a set of criteria derived from the results of the study to guide Thai teachers intending to implement cooperative learning strategies and skills in their classrooms.
Resumo:
In this paper, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society (Kirschenman and Brenner 2010)d. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of mathematics engineering curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour, and the effectiveness of problem solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.
Resumo:
This paper discusses women’s involvement in their children’s mathematics education. It does, where possible, focus Torres Strait Islander women who share the aspirations of Aborginal communities around Australia. That is, they are keen for their children to receive an education that provides them with opportunities for their present and future lives. They are also keen to have their cultures’ child learning practices recognised and respected within mainstream education. This recognition has some way to go with the language of instruction in schools written to English conventions, decontextualised and disconnected to the students’ culture, Community and home language.
Resumo:
Curriculum documents for mathematics emphasise the importance of promoting depth of knowledge rather than shallow coverage of the curriculum. In this paper, we report on a study that explored the analysis of junior secondary mathematics textbooks to assess their potential to assist in teaching and learning aimed at building and applying deep mathematical knowledge. The method of analysis involved the establishment of a set of specific curriculum goals and associated indicators, based on research into the teaching and learning of a particular field within the mathematics curriculum, namely proportion and proportional reasoning. Topic selection was due to its pervasive nature throughout the school mathematics curriculum at this level. As a result of this study, it was found that the five textbook series examined provided limited support for the development of multiplicative structures required for proportional reasoning, and hence would not serve well the development of deep learning of mathematics. The study demonstrated a method that could be applied to the analysis of junior secondary mathematics in many parts of the world.
Resumo:
Following the derivation of amplitude equations through a new two-time-scale method [O'Malley, R. E., Jr. & Kirkinis, E (2010) A combined renormalization group-multiple scale method for singularly perturbed problems. Stud. Appl. Math. 124, 383-410], we show that a multi-scale method may often be preferable for solving singularly perturbed problems than the method of matched asymptotic expansions. We illustrate this approach with 10 singularly perturbed ordinary and partial differential equations. © 2011 Cambridge University Press.
Resumo:
This paper examines the application of the Reciprocal Teaching instructional approach to Mathematical word problems in the middle years. The Reciprocal Teaching process is extended from the four traditional strategies of predicting, clarifying, questioning and summarising, to include further cognitive reading comprehension strategies applied to the context of solving Mathematical word problems.
Resumo:
With the rapid development of various technologies and applications in smart grid implementation, demand response has attracted growing research interests because of its potentials in enhancing power grid reliability with reduced system operation costs. This paper presents a new demand response model with elastic economic dispatch in a locational marginal pricing market. It models system economic dispatch as a feedback control process, and introduces a flexible and adjustable load cost as a controlled signal to adjust demand response. Compared with the conventional “one time use” static load dispatch model, this dynamic feedback demand response model may adjust the load to a desired level in a finite number of time steps and a proof of convergence is provided. In addition, Monte Carlo simulation and boundary calculation using interval mathematics are applied for describing uncertainty of end-user's response to an independent system operator's expected dispatch. A numerical analysis based on the modified Pennsylvania-Jersey-Maryland power pool five-bus system is introduced for simulation and the results verify the effectiveness of the proposed model. System operators may use the proposed model to obtain insights in demand response processes for their decision-making regarding system load levels and operation conditions.
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
Resumo:
A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.
Resumo:
An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.