189 resultados para Mass ratio

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virtual prototyping emerges as a new technology to replace existing physical prototypes for product evaluation, which are costly and time consuming to manufacture. Virtualization technology allows engineers and ergonomists to perform virtual builds and different ergonomic analyses on a product. Digital Human Modelling (DHM) software packages such as Siemens Jack, often integrate with CAD systems to provide a virtual environment which allows investigation of operator and product compatibility. Although the integration between DHM and CAD systems allows for the ergonomic analysis of anthropometric design, human musculoskeletal, multi-body modelling software packages such as the AnyBody Modelling System (AMS) are required to support physiologic design. They provide muscular force analysis, estimate human musculoskeletal strain and help address human comfort assessment. However, the independent characteristics of the modelling systems Jack and AMS constrain engineers and ergonomists in conducting a complete ergonomic analysis. AMS is a stand alone programming system without a capability to integrate into CAD environments. Jack is providing CAD integrated human-in-the-loop capability, but without considering musculoskeletal activity. Consequently, engineers and ergonomists need to perform many redundant tasks during product and process design. Besides, the existing biomechanical model in AMS uses a simplified estimation of body proportions, based on a segment mass ratio derived scaling approach. This is insufficient to represent user populations anthropometrically correct in AMS. In addition, sub-models are derived from different sources of morphologic data and are therefore anthropometrically inconsistent. Therefore, an interface between the biomechanical AMS and the virtual human model Jack was developed to integrate a musculoskeletal simulation with Jack posture modeling. This interface provides direct data exchange between the two man-models, based on a consistent data structure and common body model. The study assesses kinematic and biomechanical model characteristics of Jack and AMS, and defines an appropriate biomechanical model. The information content for interfacing the two systems is defined and a protocol is identified. The interface program is developed and implemented through Tcl and Jack-script(Python), and interacts with the AMS console application to operate AMS procedures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pretretament is an essential and expensive processing step for the manufacturing of ethanol from lignocellulosic raw materials. Ionic liquids are a new class of solvents that have the potential to be used as pretreatment agents. The attractive characteristics of ionic liquid pretreatment of lignocellulosics such as thermal stability, dissolution properties, fractionation potential, cellulose decrystallisation capacity and saccharification impact are investigated in this thesis. Dissolution of bagasse with 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) at high temperatures (110 �‹C to 160 �‹C) is investigated as a pretreatment process. Material balances are reported and used along with enzymatic saccharification data to identify optimum pretreatment conditions (150 �‹C for 90 min). At these conditions, the dissolved and reprecipitated material is enriched in cellulose, has a low crystallinity and the cellulose component is efficiently hydrolysed (93 %, 3 h, 15 FPU). At pretreatment temperatures < 150 �‹C, the undissolved material has only slightly lower crystallinity than the starting. At pretreatment temperatures . 150 �‹C, the undissolved material has low crystallinity and when combined with the dissolved material has a saccharification rate and extent similar to completely dissolved material (100 %, 3h, 15 FPU). Complete dissolution is not necessary to maximize saccharification efficiency at temperatures . 150 �‹C. Fermentation of [C4mim]Cl-pretreated, enzyme-saccharified bagasse to ethanol is successfully conducted (85 % molar glucose-to-ethanol conversion efficiency). As compared to standard dilute acid pretreatment, the optimised [C4mim]Cl pretreatment achieves substantially higher ethanol yields (79 % cf. 52 %) in less than half the processing time (pretreatment, saccharification, fermentation). Fractionation of bagasse partially dissolved in [C4mim]Cl to a polysaccharide rich and a lignin rich fraction is attempted using aqueous biphasic systems (ABSs) and single phase systems with preferential precipitation. ABSs of ILs and concentrated aqueous inorganic salt solutions are achievable (e.g. [C4mim]Cl with 200 g L-1 NaOH), albeit they exhibit a number of technical problems including phase convergence (which increases with increasing biomass loading) and deprotonation of imidazolium ILs (5 % - 8 % mol). Single phase fractionation systems comprising lignin solvents / cellulose antisolvents, viz. NaOH (2M) and acetone in water (1:1, volume basis), afford solids with, respectively, 40 % mass and 29 % mass less lignin than water precipitated solids. However, this delignification imparts little increase in saccharification rates and extents of these solids. An alternative single phase fractionation system is achieved simply by using water as an antisolvent. Regulating the water : IL ratio results in a solution that precipitates cellulose and maintains lignin in solution (0.5 water : IL mass ratio) in both [C4mim]Cl and 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc)). This water based fractionation is applied in three IL pretreatments on bagasse ([C4mim]Cl, 1-ethyl-3-methyl imidazolium chloride ([C2mim]Cl) and [C2mim]OAc). Lignin removal of 10 %, 50 % and 60 % mass respectively is achieved although only 0.3 %, 1.5 % and 11.7 % is recoverable even after ample water addition (3.5 water : IL mass ratio) and acidification (pH . 1). In addition the recovered lignin fraction contains 70 % mass hemicelluloses. The delignified, cellulose-rich bagasse recovered from these three ILs is exposed to enzyme saccharification. The saccharification (24 h, 15 FPU) of the cellulose mass in starting bagasse, achieved by these pretreatments rank as: [C2mim]OAc (83 %)>>[C2mim]Cl (53 %)=[C4mim]Cl(53%). Mass balance determinations accounted for 97 % of starting bagasse mass for the [C4mim]Cl pretreatment , 81 % for [C2mim]Cl and 79 %for [C2mim]OAc. For all three IL treatments, the remaining bagasse mass (not accounted for by mass balance determinations) is mainly (more than half) lignin that is not recoverable from the liquid fraction. After pretreatment, 100 % mass of both ions of all three ILs were recovered in the liquid fraction. Compositional characteristics of [C2mim]OAc treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are opposite to those of chloride IL treated solids. The former biomass characteristics resemble those imparted by aqueous alkali pretreatment while the latter resemble those of aqueous acid pretreatments. The 100 % mass recovery of cellulose in [C2mim]OAc as opposed to 53 % mass recovery in [C2mim]Cl further demonstrates this since the cellulose glycosidic bonds are protected under alkali conditions. The alkyl chain length decrease in the imidazolium cation of these ILs imparts higher rates of dissolution and losses, and increases the severity of the treatment without changing the chemistry involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel Glass Fibre Reinforced Polymer (GFRP) sandwich panel was developed by an Australian manufacturer for civil engineering applications. This research is motivated by the new applications of GFRP sandwich structures in civil engineering such as slab, beam, girder and sleeper. An optimisation methodology is developed in this work to enhance the design of GFRP sandwich beams. The design of single and glue laminated GFRP sandwich beam were conducted by using numerical optimisation. The numerical multi-objective optimisation considered a design two objectives simultaneously. These objectives are cost and mass. The numerical optimisation uses the Adaptive Range Multi-objective Genetic Algorithm (ARMOGA) and Finite Element (FE) method. Trade-offs between objectives was found during the optimisation process. Multi-objective optimisation shows a core to skin mass ratio equal to 3.68 for the single sandwich beam cross section optimisation and it showed that the optimum core to skin thickness ratio is 11.0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel filter Palygorskite porous ceramsite (PC) was prepared using Palygorskite clay, poreforming material sawdust, and sodium silicate with a mass ratio of 10:2:1 after sintering at 700°C for 180 min. PC was characterized with X-ray diffraction, X-ray fluorescence, scanning electron microscopy, elemental, and porosimetry. PC had a total porosity of 67% and specific surface area of 61 m2/g. In order to assess the usefulness of PC as a medium for biological aerated filters (BAF), PC and (commercially available ceramsite) CAC were used to treat wastewater city in two laboratory-scale upflow BAFs. The results showed that the reactor containing PC was more efficient than the reactor containing CAC in terms of total organic carbon (TOC), ammonia nitrogen (NH3-N), and the removal of total nitrogen (TN) and phosphorus (P). This system was found to be more efficient at water temperatures ranging from 20 to 26°C, an air–water (A/W) ratio of 3:1, dissolved oxygen concentration >4.00 mg/L, and hydraulic retention time (HRT) ranging from 0.5 to 7 h. The interconnected porous structure produced for PC was suitable for microbial growth, and primarily protozoan and metazoan organisms were found in the biofilm. Microorganism growth also showed that, under the same submerged culture conditions, the biological mass in PC was significantly higher than in CAC (34.1 and 2.2 mg TN/g, respectively). In this way, PC media can be considered suitable for the use as a medium in novel biological aerated filters for the simultaneous removal of nitrogen and phosphorus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ceramsite plays a significant role as a biological aerated filter (BAF) in the treatment of wastewater. In this study, a mixture of goethite, sawdust and palygorskite clay was thermally treated to form magnetic porous ceramsite (MPC). An optimization experiment was conducted to measure the compressive strength of the MPC. X-ray diffraction (XRD), scanning electron microscopy (SEM), and polarizing microscopy (PM) characterized the pore structure of the MPC. The results show that a combination of goethite, sawdust and palygorskite clay with a mass ratio of 10:2:5 is suitable for the formation of MPC. The compressive strength of MPC conforms to the Chinese national industrial standard (CJ/T 299-2008) for wastewater treatment. The SEM and PM results also show that the uniform and interconnected pores in MPC were well suited for microbial growth. The MPC produced in this study can serve as a biomedium for advanced wastewater treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural convection of a two-dimensional laminar steady-state incompressible fluid flow in a modified rectangular enclosure with sinusoidal corrugated top surface has been investigated numerically. The present study has been carried out for different corrugation frequencies on the top surface as well as aspect ratios of the enclosure in order to observe the change in hydrodynamic and thermal behavior with constant corrugation amplitude. A constant flux heat source is flush mounted on the top sinusoidal wall, modeling a wavy sheet shaded room exposed to sunlight. The flat bottom surface is considered as adiabatic, while the both vertical side walls are maintained at the constant ambient temperature. The fluid considered inside the enclosure is air having Prandtl number of 0.71. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. The results in terms of isotherms, streamlines and average Nusselt numbers are obtained for the Rayleigh number ranging from 10^3 to 10^6 with constant physical properties for the fluid medium considered. It is found that the convective phenomena are greatly influenced by the presence of the corrugation and variation of aspect ratios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, magnetohydrodynamic natural convection boundary layer flow of an electrically conducting and viscous incompressible fluid along a heated vertical flat plate with uniform heat and mass flux in the presence of strong cross magnetic field has been investigated. For smooth integrations the boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation as well as the free variable formulation. The nonsimilar parabolic partial differential equations are integrated numerically for Pr ≪1 that is appropriate for liquid metals against the local Hartmann parameter ξ . Further, asymptotic solutions are obtained near the leading edge using regular perturbation method for smaller values of ξ . Solutions for values of ξ ≫ 1 are also obtained by employing the matched asymptotic technique. The results obtained for small, large and all ξ regimes are examined in terms of shear stress, τw, rate of heat transfer, qw, and rate of mass transfer, mw, for important physical parameter. Attention has been given to the influence of Schmidt number, Sc, buoyancy ratio parameter, N and local Hartmann parameter, ξ on velocity, temperature and concentration distributions and noted that velocity and temperature of the fluid achieve their asymptotic profiles for Sc ≥ 10:0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterization of mass transfer properties was achieved in the longitudinal, radial, and tangential directions for four Australian hardwood species: spotted gum, blackbutt, jarrah, and messmate. Measurement of mass transfer properties for these species was necessary to complement current vacuum drying modeling research. Water-vapour diffusivity was determined in steady state using a specific vapometer. Permeability was determined using a specialized device developed to measure over a wide range of permeability values. Permeability values of some species and material directions were extremely low and undetectable by the mass flow meter device. Hence, a custom system based on volume evolution was conceived to determine very low, previously unpublished, wood permeability values. Mass diffusivity and permeability were lowest for spotted gum and highest for messmate. Except for messmate in the radial direction, the four species measured were less permeable in all directions than the lowest published figures, demonstrating the high impermeability of Australian hardwoods and partly accounting for their relatively slow drying rates. Permeability, water-vapour diffusivity, and associated anisotropic ratio data obtained for messmate were extreme or did not follow typical trends and is consequently the most difficult of the four woods to dry in terms of collapse and checking degradation. © The State of Queensland, Department of Agriculture, Fisheries and Forestry, 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long term exposure to vehicle emissions has been associated with harmful health effects. Children are amongst the most susceptible group and schools represent an environment where they can experience significant exposure to vehicle emissions. However, there are limited studies on children’s exposure to vehicle emissions in schools. The aim of this study was to quantify the concentration of organic aerosol and in particular, vehicle emissions that children are exposed to during school hours. Therefore an Aerodyne compact time-of-flight aerosol mass spectrometer (TOF-AMS) was deployed at five urban schools in Brisbane, Australia. The TOF-AMS enabled the chemical composition of the non- refractory (NR-PM1) to be analysed with a high temporal resolution to assess the concentration of vehicle emissions and other organic aerosols during school hours. At each school the organic fraction comprised the majority of NR-PM1 with secondary organic aerosols as the main constitute. At two of the schools, a significant source of the organic aerosol (OA) was slightly aged vehicle emissions from nearby highways. More aged and oxidised OA was observed at the other three schools, which also recorded strong biomass burning influences. Primary emissions were found to dominate the OA at only one school which had an O:C ratio of 0.17, due to fuel powered gardening equipment used near the TOF-AMS. The diurnal cycle of OA concentration varied between schools and was found to be at a minimum during school hours. The major organic component that school children were exposed to during school hours was secondary OA. Peak exposure of school children to HOA occurred during school drop off and pick up times. Unless a school is located near major roads, children are exposed predominately to regional secondary OA as opposed to local emissions during schools hours in urban environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The position(s) of carbon-carbon double bonds within lipids can dramatically affect their structure and reactivity and thus has a direct bearing on biological function. Commonly employed mass spectrometric approaches to the characterization of complex lipids, however, fail to localize sites of unsaturation within the molecular structure and thus cannot distinguish naturally occurring regioisomers. In a recent communication \[Thomas, M. C.; Mitchell, T. W.; Blanksby, S. J. J. Am. Chem. Soc. 2006, 128, 58-59], we have presented a new technique for the elucidation of double bond position in glycerophospholipids using ozone-induced fragmentation within the source of a conventional electrospray ionization mass spectrometer. Here we report the on-line analysis, using ozone electrospray mass spectrometry (OzESI-MS), of a broad range of common unsaturated lipids including acidic and neutral glycerophospholipids, sphingomyelins, and triacylglycerols. All lipids analyzed are found to form a pair of chemically induced fragment ions diagnostic of the position of each double bond(s) regardless of the polarity, the number of charges, or the adduction (e.g., \[M - H](-), \[M - 2H](2-), \[M + H](+), \[M + Na](+), \[M + NH4](+)). The ability of OzESI-MS to distinguish lipids that differ only in the position of the double bonds is demonstrated using the glycerophosphocholine standards, GPCho(9Z-18:1/9Z-18:1) and GPCho(6Z-18:1/6Z-18:1). While these regioisomers cannot be differentiated by their conventional tandem mass spectra, the OzESI-MS spectra reveal abundant fragment ions of distinctive mass-to-charge ratio (m/z). The approach is found to be sufficiently robust to be used in conjunction with the m/z 184 precursor ion scans commonly employed for the identification of phosphocholine-containing lipids in shotgun lipidomic analyses. This tandem OzESI-MS approach was used, in conjunction with conventional tandem mass spectral analysis, for the structural characterization of an unknown sphingolipid in a crude lipid extract obtained from a human lens. The OzESI-MS data confirm the presence of two regioisomers, namely, SM(d18:0/15Z-24:1) and SM(d18:0/17Z-24:1), and suggest the possible presence of a third isomer, SM(d18:0/19Z-24:1), in lower abundance. The data presented herein demonstrate that OzESI-MS is a broadly applicable, on-line approach for structure determination and, when used in conjunction with established tandem mass spectrometric methods, can provide near complete structural characterization of a range of important lipid classes. As such, OzESI-MS may provide important new insight into the molecular diversity of naturally occurring lipids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To examine the association of maternal pregravid body mass index (BMI) and child offspring, all-cause hospitalisations in the first 5 years of life. Methods: Prospective birth cohort study. From 2006 to 2011, 2779 pregnant women (2807 children) were enrolled in the Environments for Healthy Living: Griffith birth cohort study in South-East Queensland, Australia. Hospital delivery record and self-report baseline survey of maternal, household and demographic factors during pregnancy were linked to the Queensland Hospital Admitted Patients Data Collection from 1 November 2006 to 30 June 2012, for child admissions. Maternal pregravid BMI was classified as underweight (<18.5 kg m−2), normal weight (18.5–24.9 kg m−2), overweight (25.0–29.9 kg m−2) or obese (30 kg m−2). Main outcomes were the total number of child hospital admissions and ICD-10-AM diagnostic groupings in the first 5 years of life. Negative binomial regression models were calculated, adjusting for follow-up duration, demographic and health factors. The cohort comprised 8397.9 person years (PYs) follow-up. Results: Children of mothers who were classified as obese had an increased risk of all-cause hospital admissions in the first 5 years of life than the children of mothers with a normal BMI (adjusted rate ratio (RR) =1.48, 95% confidence interval 1.10–1.98). Conditions of the nervous system, infections, metabolic conditions, perinatal conditions, injuries and respiratory conditions were excessive, in both absolute and relative terms, for children of obese mothers, with RRs ranging from 1.3–4.0 (PYs adjusted). Children of mothers who were underweight were 1.8 times more likely to sustain an injury or poisoning than children of normal-weight mothers (PYs adjusted). Conclusion: Results suggest that if the intergenerational impact of maternal obesity (and similarly issues related to underweight) could be addressed, a significant reduction in child health care use, costs and public health burden would be likely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary High bone mineral density on routine dual energy X-ray absorptiometry (DXA) may indicate an underlying skeletal dysplasia. Two hundred fifty-eight individuals with unexplained high bone mass (HBM), 236 relatives (41% with HBM) and 58 spouses were studied. Cases could not float, had mandible enlargement, extra bone, broad frames, larger shoe sizes and increased body mass index (BMI). HBM cases may harbour an underlying genetic disorder. Introduction High bone mineral density is a sporadic incidental finding on routine DXA scanning of apparently asymptomatic individuals. Such individuals may have an underlying skeletal dysplasia, as seen in LRP5 mutations. We aimed to characterize unexplained HBM and determine the potential for an underlying skeletal dysplasia. Methods Two hundred fifty-eight individuals with unexplained HBM (defined as L1 Z-score ≥ +3.2 plus total hip Z-score ≥ +1.2, or total hip Z-score ≥ +3.2) were recruited from 15 UK centres, by screening 335,115 DXA scans. Unexplained HBM affected 0.181% of DXA scans. Next 236 relatives were recruited of whom 94 (41%) had HBM (defined as L1 Z-score + total hip Z-score ≥ +3.2). Fifty-eight spouses were also recruited together with the unaffected relatives as controls. Phenotypes of cases and controls, obtained from clinical assessment, were compared using random-effects linear and logistic regression models, clustered by family, adjusted for confounders, including age and sex. Results Individuals with unexplained HBM had an excess of sinking when swimming (7.11 [3.65, 13.84], p < 0.001; adjusted odds ratio with 95% confidence interval shown), mandible enlargement (4.16 [2.34, 7.39], p < 0.001), extra bone at tendon/ligament insertions (2.07 [1.13, 3.78], p = 0.018) and broad frame (3.55 [2.12, 5.95], p < 0.001). HBM cases also had a larger shoe size (mean difference 0.4 [0.1, 0.7] UK sizes, p = 0.009) and increased BMI (mean difference 2.2 [1.3, 3.1] kg/m 2, p < 0.001). Conclusion Individuals with unexplained HBM have an excess of clinical characteristics associated with skeletal dysplasia and their relatives are commonly affected, suggesting many may harbour an underlying genetic disorder affecting bone mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador: