3 resultados para Marine Mammal Tracking
em Queensland University of Technology - ePrints Archive
Resumo:
The following technical report describes the approach and algorithm used to detect marine mammals from aerial imagery taken from manned/unmanned platform. The aim is to automate the process of counting the population of dugongs and other mammals. We have developed and algorithm that automatically presents to a user a number of possible candidates of these mammals. We tested the algorithm in two distinct datasets taken from different altitudes. Analysis and discussion is presented in regards with the complexity of the input datasets, the detection performance.
Resumo:
This paper presents two algorithms to automate the detection of marine species in aerial imagery. An algorithm from an initial pilot study is presented in which morphology operations and colour analysis formed the basis of its working principle. A second approach is presented in which saturation channel and histogram-based shape profiling were used. We report on performance for both algorithms using datasets collected from an unmanned aerial system at an altitude of 1000 ft. Early results have demonstrated recall values of 48.57% and 51.4%, and precision values of 4.01% and 4.97%.
Resumo:
Aerial surveys conducted using manned or unmanned aircraft with customized camera payloads can generate a large number of images. Manual review of these images to extract data is prohibitive in terms of time and financial resources, thus providing strong incentive to automate this process using computer vision systems. There are potential applications for these automated systems in areas such as surveillance and monitoring, precision agriculture, law enforcement, asset inspection, and wildlife assessment. In this paper, we present an efficient machine learning system for automating the detection of marine species in aerial imagery. The effectiveness of our approach can be credited to the combination of a well-suited region proposal method and the use of Deep Convolutional Neural Networks (DCNNs). In comparison to previous algorithms designed for the same purpose, we have been able to dramatically improve recall to more than 80% and improve precision to 27% by using DCNNs as the core approach.