229 resultados para Magnetorquer torquerod nanosatellite ACS attitude control magnetic actuators cubesat air core embedded coil
em Queensland University of Technology - ePrints Archive
Resumo:
The observing failure and feedback instability might happen when the partial sensors of a satellite attitude control system (SACS) go wrong. A fault diagnosis and isolation (FDI) method based on a fault observer is introduced to detect and isolate the fault sensor at first. Based on the FDI result, the object system state-space equation is transformed and divided into a corresponsive triangular canonical form to decouple the normal subsystem from the fault subsystem. And then the KX fault-tolerant observers of the system in different modes are designed and embedded into online monitoring. The outputs of all KX fault-tolerant observers are selected by the control switch process. That can make sense that the SACS is part-observed and in stable when the partial sensors break down. Simulation results demonstrate the effectiveness and superiority of the proposed method.
Resumo:
This paper describes system identification, estimation and control of translational motion and heading angle for a cost effective open-source quadcopter — the MikroKopter. The dynamics of its built-in sensors, roll and pitch attitude controller, and system latencies are determined and used to design a computationally inexpensive multi-rate velocity estimator that fuses data from the built-in inertial sensors and a low-rate onboard laser range finder. Control is performed using a nested loop structure that is also computationally inexpensive and incorporates different sensors. Experimental results for the estimator and closed-loop positioning are presented and compared with ground truth from a motion capture system.
Resumo:
This paper details the progress to date, toward developing a small autonomous helicopter. We describe system architecture, avionics, visual state estimation, custom IMU design, aircraft modelling, as well as various linear and neuro/fuzzy control algorithms. Experimental results are presented for state estimation using fused stereo vision and IMU data, heading control, and attitude control. FAM attitude and velocity controllers have been shown to be effective in simulation.
Resumo:
Suspended loads on UAVs can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present software and flight system architecture to test controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions.
Resumo:
There is an increasing demand for Unmanned Aerial Systems (UAS) to carry suspended loads as this can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. The constant variation in operating point induced by the slung load also causes conventional controllers to demand increased control effort. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present a novel controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions. The paper describes a System Dynamics and Control Simulation Toolbox for use with MATLAB/SIMULINK which includes a detailed simulation of the multi-rotor and slung load as well as a predictive controller to manage the nonlinear dynamics whilst accounting for system constraints. It is demonstrated that the controller simultaneously tracks specified waypoints and actively damps large slung load oscillations. A linear-quadratic regulator (LQR) is derived and control performance is compared. Results show the improved performance of the predictive controller for a larger flight envelope, including aggressive manoeuvres and large slung load displacements. The computational cost remains relatively small, amenable to practical implementations.
Resumo:
Fast thrust changes are important for authoritive control of VTOL micro air vehicles. Fixed-pitch rotors that alter thrust by varying rotor speed require high-bandwidth control systems to provide adequate performace. We develop a feedback compensator for a brushless hobby motor driving a custom rotor suitable for UAVs. The system plant is identified using step excitation experiments. The aerodynamic operating conditions of these rotors are unusual and so experiments are performed to characterise expected load disturbances. The plant and load models lead to a proportional controller design capable of significantly decreasing rise-time and propagation of disturbances, subject to bus voltage constraints.
Resumo:
Evidence within Australia and internationally suggests parenthood as a risk factor for inactivity; however, research into understanding parental physical activity is scarce. Given that active parents can create active families and social factors are important for parents’ decision making, the authors investigated a range of social influences on parents’ intentions to be physically active. Parents (N = 580; 288 mothers and 292 fathers) of children younger than 5 years completed an extended Theory of Planned Behavior questionnaire either online or paper based. For both genders, attitude, control factors, group norms, friend general support, and an active parent identity predicted intentions, with social pressure and family support further predicting mothers’ intentions and active others further predicting fathers’ intentions. Attention to these factors and those specific to the genders may improve parents’ intentions to be physically active, thus maximizing the benefits to their own health and the healthy lifestyle practices for other family members.
Resumo:
A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.
Resumo:
The overarching aim of this study is to create new knowledge about how playful interactions (re)create the city via ubiquitous technologies, with an outlook to apply the knowledge for pragmatic innovations in relevant fields such as urban planning and technology development in the future. The study looks at the case of transyouth, the in-between demographic bridging youth and adulthood in Seoul, one of the most connected, densely populated, and quickly transforming metropolises in the world. To unravel the elusiveness of ‘play’ as a subject and the complexity of urban networks, this study takes a three-tier transdisciplinary approach comprised of an extensive literature review, Shared Visual Ethnography (SVE), and interviews with leading industry representatives who design and develop the playscape for Seoul transyouth. Through these methodological tools, the study responds to the following four research aims: 1. Examine the sociocultural, technological, and architectural context of Seoul 2. Investigate Seoul transyouth’s perception of the self and their technosocial environment 3. Identify the pattern of their playful interaction through which meanings of the self and the city are recreated 4. Develop an analytical framework for enactment of play This thesis argues that the city is a contested space that continuously changes through multiple interactions among its constituents on the seam of control and freedom. At the core of this interactive (re)creation process is play. Play is a phenomenon that is enacted at the centre of three inter-related elements of pressure, possibility, and pleasure, the analytical framework this thesis puts forward as a conceptual apparatus for studying play across disciplines. The thesis concludes by illustrating possible trajectories for pragmatic application of the framework for envisioning and building the creative, sustainable, and seductive city.
Resumo:
The development and design of electric high power devices with electromagnetic computer-aided engineering (EM-CAE) software such as the Finite Element Method (FEM) and Boundary Element Method (BEM) has been widely adopted. This paper presents the analysis of a Fault Current Limiter (FCL), which acts as a high-voltage surge protector for power grids. A prototype FCL was built. The magnetic flux in the core and the resulting electromagnetic forces in the winding of the FCL were analyzed using both FEM and BEM. An experiment on the prototype was conducted in a laboratory. The data obtained from the experiment is compared to the numerical solutions to determine the suitability and accuracy of the two methods.
Resumo:
Series reactors are used in distribution grids to reduce the short-circuit fault level. Some of the disadvantages of the application of these devices are the voltage drop produced across the reactor and the steep front rise of the transient recovery voltage (TRV), which generally exceeds the rating of the associated circuit breaker. Simulations were performed to compare the characteristics of a saturated core High-Temperature Superconducting Fault Current Limiter (HTS FCL) and a series reactor. The design of the HTS FCL was optimized using the evolutionary algorithm. The resulting Pareto frontier curve of optimum solution is presented in this paper. The results show that the steady-state impedance of an HTS FCL is significantly lower than that of a series reactor for the same level of fault current limiting. Tests performed on a prototype 11 kV HTS FCL confirm the theoretical results. The respective transient recovery voltages (TRV) of the HTS FCL and an air core reactor of comparable fault current limiting capability are also determined. The results show that the saturated core HTS FCL has a significantly lower effect on the rate of rise of the circuit breaker TRV as compared to the air core reactor. The simulations results are validated with shortcircuit test results.
Resumo:
This study was a step forward in modeling, simulation and microcontroller implementation of a high performance control algorithm for the motor of a blood pump. The rotor angle is sensed using three Hall effect sensors and an algorithm is developed to obtain better angular resolution from the three signals for better discrete-time updates of the controller. The performance of the system was evaluated in terms of actual and reference speeds, stator currents and power consumption over a range of reference speeds up to 4000 revolutions per minute. The use of fewer low cost Hall effect sensors compared to expensive high resolution sensors could reduce the cost of blood pumps for total artificial hearts.