2 resultados para Magnetic susceptibility measurements
em Queensland University of Technology - ePrints Archive
Resumo:
Soils at many locations that have their origin in volcanic parent material and have undergone extensive weathering often exhibit strong frequency-dependent magnetic susceptibilities. The presence of such susceptibility has a profound effect on electromagnetic induction data acquired in such environments. Their transient electromagnetic response is characterized by a t-1 decay that is strong enough to mask UXO responses. In a field study and associated laboratory work on characterizing the frequency-dependent magnetic susceptibility and its influence on transient electromagnetic data, we collected soil samples on the surface and in soil pits from the Island of Kaho'olawe, Hawaii, and measured their frequency dependent magnetic susceptibilities. We present the details of the field investigation, confirm previous theoretical work with field and laboratory measurements, characterize the susceptibility with a Cole-Cole model, and investigate the response specific to the measured susceptibility.
Resumo:
One of the Department of Defense's most pressing environmental problems is the efficient detection and identification of unexploded ordnance (UXO). In regions of highly magnetic soils, magnetic and electromagnetic sensors often detect anomalies that are of geologic origin, adding significantly to remediation costs. In order to develop predictive models for magnetic susceptibility, it is crucial to understand modes of formation and the spatial distribution of different iron oxides. Most rock types contain iron and their magnetic susceptibility is determined by the amount and form of iron oxides present. When rocks weather, the amount and form of the oxides change, producing concomitant changes in magnetic susceptibility. The type of iron oxide found in the weathered rock or regolith is a function of the duration and intensity of weathering, as well as the original content of iron in the parent material. The rate of weathering is controlled by rainfall and temperature; thus knowing the climate zone, the amount of iron in the lithology and the age of the surface will help predict the amount and forms of iron oxide. We have compiled analyses of the types, amounts, and magnetic properties of iron oxides from soils over a wide climate range, from semi arid grasslands, to temperate regions, and tropical forests. We find there is a predictable range of iron oxide type and magnetic susceptibility according to the climate zone, the age of the soil and the amount of iron in the unweathered regolith.