218 resultados para Macro instructions (Electronic computers)
em Queensland University of Technology - ePrints Archive
Resumo:
Wynne and Schaffer (2003) have highlighted both the strong growth of gambling activity in recent years, and the revenue streams this has generated for governments and communities. Gambling activities and the revenues derived from them have, unsurprisingly, therefore also been seen as a way in which to increase economic development in deprived areas (Jinkner-Lloyd, 1996). Consequently, according to Brown et al (2003), gambling is now a large taxation revenue earner for many western governments, at both federal and state levels, worldwide (for example UK, USA, Australia). In size and importance, the Australian gambling industry in particular has grown significantly over the last three decades, experiencing a fourfold increase in real gambling turnover. There are, however, also concerns expressed about gambling and Electronic Gaming in particular, as illustrated in economic, social and ethical terms in Oddo (1997). There are also spatial aspects to understanding these issues. Marshall’s (1998) study, for example, highlights that benefits from gambling are more likely to accrue at the macro as opposed to the local level, because of centralised tax gathering and spending of tax revenues, whilst localities may suffer from displacement of activities with higher multipliers than the institutions with EGMs that replace them. This also highlights a regional context of costs, where benefits accrue to the centre, but the costs accrue to the regions and localities, as simultaneously resources leave those communities through both the gambling activities themselves (in the form of revenue for the EGM owners), and the government (through taxes).
Resumo:
A series of solid strong acid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid strong acid counterparts were characterised by a variety of techniques including 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR), scanned electronic microscopy (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Nitrogen adsorption and infrared emission spectroscopy (IES). NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained solid acids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia.
Resumo:
Visible, near-infrared, IR and Raman spectra of magnesian gaspeite are presented. Nickel ion is the main source of the electronic bands as it is the principal component in the mineral where as the bands in IR and Raman spectra are due to the vibrational processes in the carbonate ion as an entity. The combination of electronic absorption and vibrational spectra (including near-infrared, FTIR and Raman) of magnesian gaspeite are explained in terms of the cation co-ordination and the behaviour of CO32– anion in the Ni–Mg carbonate. The electronic absorption spectrum consists of three broad and intense bands at 8130, 13160 and 22730 cm–1 due to spin-allowed transitions and two weak bands at 20410 and 30300 cm–1 are assigned to spin-forbidden transitions of Ni2+ in an octahedral symmetry. The crystal field parameters evaluated from the observed bands are Dq = 810; B = 800 and C = 3200 cm–1. The two bands in the near-infrared spectrum at 4330 and 5130 cm–1 are overtone and combination of CO32– vibrational modes. For the carbonate group, infrared bands are observed at 1020 cm–1(1 ), 870 cm–1 (2), 1418 cm–1 (3) and 750 cm–1 (4), of which3, the asymmetric stretching mode is most intense. Three well resolved Raman bands at 1571, 1088 and 331 cm–1 are assigned to 3, 1 and MO stretching vibrations.