7 resultados para MOLYBDENUM(VI)
em Queensland University of Technology - ePrints Archive
Resumo:
An investigation of the electrical and hydrogen sensing properties of a novel Schottky diode based on a nanostructured lanthanum oxide-molybdenum oxide compound is presented herein. Molybdenum oxide (MoO3) nanoplatelets were grown on SiC substrates via thermal evaporation which was then subsequently coated with lanthanum oxide (La2O3) by RF sputtering. The current-voltage characteristics and hydrogen sensing performance (change in barrier height and sensitivity as well as the dynamic response) were examined from 25 to 300°C. At 180°C, a voltage shift of 2.23V was measured from the sensor while exposed to 1% hydrogen gas under a 100 μA constant reverse bias current. The results indicate that the presence of a La2O3 thin layer substantially improves the hydrogen sensitivity of the MoO3 nanoplatelets.
Resumo:
Composite TiO2/acid leached serpentine tailings (AST) were synthesized through the hydrolysis–deposition method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energydispersive X-ray spectrometry (EDS), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and surface area measurement (BET). The XRD analysis showed that TiO2 coated on the surface of acid leached serpentine tailings was mixed crystal phases of rutile and anatase, the grain size of which is 10–30 nm. SEM, TEM, and EDS analysis exhibited that nano-TiO2 particles were deposited on the surface and internal cavities of acid leaching serpentine tailings. The XPS and FT-IR analysis demonstrated that the coating process of TiO2 on AST was a physical adsorption process. The large specific surface area, porous structure, and plentiful surface hydroxyl group of TiO2/AST composite resulted in the high adsorption capacity of Cr(VI). The experimental results demonstrated that initial concentration of Cr(VI), the amount of the catalyst, and pH greatly influenced the removal efficiency of Cr(VI). The removal kinetics of Cr(VI) at a relative low initial concentration was fitted well with Langmuir–Hinshelwood kinetics model with R2 value of about unity. The asprepared composites exhibited strong adsorption and photocatalytic capacity for the removal of Cr(VI), and the possible photocatalytic reduction mechanism was studied. The photodecomposition of Cr(VI) was as high as 95% within 2 h, and the reusability of the photocatalysis was proven.
Resumo:
The formation of readily recoverable and reusable organic semiconducting Cu- and AgTCNQ (TCNQ=7,7,8,8-tetracyanoquinodimethane) microstructures decorated with Pt and Pd metallic nanoparticles is described for the effective reduction of CrVI ions in aqueous solution at room temperature using both formic acid and an environmentally friendly thiosulfate reductant. The M-TCNQ (M=metal) materials were formed by electrocrystallisation onto a glassy carbon surface followed by galvanic replacement in the presence of H2PtCl6 or PdCl2 to form the composite material. It was found that loading of the surface with nanoparticles could easily be controlled by changing the metal salt concentration. Significantly, the M-TCNQ substrates facilitated the formation of well-isolated metal nanoparticles on their surfaces under appropriate galvanic replacement conditions. The semiconductor–metal nanoparticle combination was also found to be critical to the catalyst performance, wherein the best-performing material was CuTCNQ modified by well-isolated Pt nanoparticles with both formic acid and thiosulfate ions as the reductant.
Resumo:
Zero valent iron (ZVI) was prepared by reducing natural goethite (NG-ZVI) and synthetic goethite (SG-ZVI) in hydrogen at 550 °C. XRD, TEM, FESEM/EDS and specific surface area (SSA) and pore analyser were used to characterize goethites and reduced goethites. Both NG-ZVI and SG-ZVI with a size of nanoscale to several hundreds of nanometers were obtained by reducing goethites at 550 °C. The reductive capacity of the ZVIs was assessed by removal of Cr(VI) at ambient temperature in comparison with that of commercial iron powder (CIP). The effect of contact time, initial concentration and reaction temperature on Cr(VI) removal was investigated. Furthermore, the uptake mechanism was discussed according to isotherms, thermodynamic analysis and the results of XPS. The results showed that SG-ZVI had the best reductive capacity to Cr(VI) and reduced Cr(VI) to Cr(III). The results suggest that hydrogen reduction is a good approach to prepare ZVI and this type of ZVI is potentially useful in remediating heavy metals as a material of permeable reaction barrier.
Resumo:
The phase transition of single layer molybdenum disulphide (MoS2) from semi-conducting 2H to metallic 1T and then to 1T' phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory. Experimentally, 2H-MoS2 has been widely used as an excellent electrode for HER and can get charged easily. Here we find that the negative charge has a significant impact on the structural phase transition in a MoS2 monolayer. The thermodynamic stability of 1T-MoS2 increases with the negative charge state, comparing with the 2H-MoS2 structure before phase transition and the kinetic energy barrier for a phase transition from 2H to 1T decreases from 1.59 eV to 0.27 eV when 4 e- are injected per MoS2 unit. Additionally, 1T phase is found to transform into the distorted structure (1T' phase) spontaneously. On their activity toward hydrogen evolution reaction, 1T'-MoS2 structure hydrogen coverage shows comparable hydrogen evolution reaction activity to the 2H-MoS2 structure. If the charge transfer kinetics is taken into account, the catalytic activity of 1T'-MoS2 is superior to that of 2H-MoS2. Our finding provides a possible novel method for phase transition of MoS2, and enriches understanding of the catalytic properties of MoS2 for HER.
Resumo:
The phase transition of single layer molybdenum disulfide (MoS2) from semiconducting 2H to metallic 1T and then to 1T′ phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory. Experimentally, 2H-MoS2 has been widely used as an excellent electrode for HER and can get charged easily. Here we find that the negative charge has a significant impact on the structural phase transition in a MoS2 monolayer. The thermodynamic stability of 1T-MoS2 increases with the negative charge state, comparing with the 2H-MoS2 structure before phase transition and the kinetic energy barrier for a phase transition from 2H to 1T decreases from 1.59 to 0.27 eV when 4e– are injected per MoS2 unit. Additionally, 1T phase is found to transform into the distorted structure (1T′ phase) spontaneously. On their activity toward hydrogen evolution reaction, 1T′-MoS2 structure shows comparable hydrogen evolution reaction activity to the 2H-MoS2 structure. If the charge transfer kinetics is taken into account, the catalytic activity of 1T′-MoS2 is superior to that of 2H-MoS2. Our finding provides a possible novel method for phase transition of MoS2 and enriches understanding of the catalytic properties of MoS2 for HER.
Resumo:
Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (−2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g−1 and 640 mAh g−1 at 0.1 A g−1.