334 resultados para MOLECULAR TAXONOMY
em Queensland University of Technology - ePrints Archive
Resumo:
With well over 700 species, the Tribe Dacini is one of the most species-rich clades within the dipteran family Tephritidae, the true fruit flies. Nearly all Dacini belong to one of two very large genera, Dacus Fabricius and Bactrocera Macquart. The distribution of the genera overlap in or around the Indian subcontinent, but the greatest diversity of Dacus is in Africa and the greatest diversity of Bactrocera is in south-east Asia and the Pacific. The monophyly of these two genera has not been rigorously established, with previous phylogenies only including a small number of species and always heavily biased to one genus over the other. Moreover, the subgeneric taxonomy within both genera is complex and the monophyly of many subgenera has not been explicitly tested. Previous hypotheses about the biogeography of the Dacini based on morphological reviews and current distributions of taxa have invoked an out-of-India hypothesis; however this has not been tested in a phylogenetic framework. We attempted to resolve these issues with a dated, molecular phylogeny of 125 Dacini species generated using 16S, COI, COII and white eye genes. The phylogeny shows that Bactrocera is not monophyletic, but rather consists of two major clades: Bactrocera s.s. and the ‘Zeugodacus group of subgenera’ (a recognised, but informal taxonomic grouping of 15 Bactrocera subgenera). This ‘Zeugodacus’ clade is the sister group to Dacus, not Bactrocera and, based on current distributions, split from Dacus before that genus moved into Africa. We recommend that taxonomic consideration be given to raising Zeugodacus to genus level. Supportive of predictions following from the out-of-India hypothesis, the first common ancestor of the Dacini arose in the mid-Cretaceous approximately 80 mya. Major divergence events occurred during the Indian rafting period and diversification of Bactrocera apparently did not begin until after India docked with Eurasia (50–35 mya). In contrast, diversification in Dacus, at approximately 65 mya, apparently began much earlier than predicted by the out-of-India hypothesis, suggesting that, if the Dacini arose on the Indian plate, then ancestral Dacus may have left the plate in the mid to late Cretaceous via the well documented India–Madagascar–Africa migration route. We conclude that the phylogeny does not disprove the predictions of an out-of-India hypothesis for the Dacini, although modification of the original hypothesis is required.
Resumo:
Carrion-breeding Sarcophagidae (Diptera) can be used to estimate the post-mortem interval (PMI) in forensic cases. Difficulties with accurate morphological identifications at any life stage and a lack of documented thermobiological profiles have limited their current usefulness of these flies. The molecular-based approach of DNA barcoding, which utilises a 648-bp fragment of the mitochondrial cytochrome oxidase subunit I gene, was previously evaluated in a pilot study for the discrimination between 16 Australian sarcophagids. The current study comprehensively evaluated DNA barcoding on a larger taxon set of 588 adult Australian sarcophagids. A total of 39 of the 84 known Australian species were represented by 580 specimens, which includes 92% of potentially forensically important species. A further eight specimens could not be reliably identified, but included as six unidentifable taxa. A neighbour-joining phylogenetic tree was generated and nucleotide sequence divergences were calculated using the Kimura-two-parameter distance model. All species except Sarcophaga (Fergusonimyia) bancroftorum, known for high morphological variability, were resolved as reciprocally monophyletic (99.2% of cases), with most having bootstrap support of 100. Excluding S. bancroftorum, the mean intraspecific and interspecific variation ranged from 0.00-1.12% and 2.81-11.23%, respectively, allowing for species discrimination. DNA barcoding was therefore validated as a suitable method for the molecular identification of the Australian Sarcophagidae, which will aid in the implementation of this fauna in forensic entomology.
Resumo:
Bactrocera dorsalis sensu stricto, B. papayae, B. philippinensis and B. carambolae are serious pest fruit fly species of the B. dorsalis complex that predominantly occur in south-east Asia and the Pacific. Identifying molecular diagnostics has proven problematic for these four taxa, a situation that cofounds biosecurity and quarantine efforts and which may be the result of at least some of these taxa representing the same biological species. We therefore conducted a phylogenetic study of these four species (and closely related outgroup taxa) based on the individuals collected from a wide geographic range; sequencing six loci (cox1, nad4-3′, CAD, period, ITS1, ITS2) for approximately 20 individuals from each of 16 sample sites. Data were analysed within maximum likelihood and Bayesian phylogenetic frameworks for individual loci and concatenated data sets for which we applied multiple monophyly and species delimitation tests. Species monophyly was measured by clade support, posterior probability or bootstrap resampling for Bayesian and likelihood analyses respectively, Rosenberg's reciprocal monophyly measure, P(AB), Rodrigo's (P(RD)) and the genealogical sorting index, gsi. We specifically tested whether there was phylogenetic support for the four 'ingroup' pest species using a data set of multiple individuals sampled from a number of populations. Based on our combined data set, Bactrocera carambolae emerges as a distinct monophyletic clade, whereas B. dorsalis s.s., B. papayae and B. philippinensis are unresolved. These data add to the growing body of evidence that B. dorsalis s.s., B. papayae and B. philippinensis are the same biological species, which poses consequences for quarantine, trade and pest management.
Resumo:
The infrared (IR) spectroscopic data for a series of eleven heteroleptic bis(phthalocyaninato) rare earth complexes MIII(Pc)[Pc(α-OC5H11)4] (M = Sm–Lu, Y) [H2Pc = unsubstituted phthalocyanine, H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected with 2 cm−1 resolution. Raman spectroscopic properties in the range of 500–1800 cm−1 for these double-decker molecules have also been comparatively studied using laser excitation sources emitting at 632.8 and 785 nm. Both the IR and Raman spectra for M(Pc)[Pc(α-OC5H11)4] are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues due to the decreased molecular symmetry of these double-decker compounds, namely C4. For this series, the IR Pc√− marker band appears as an intense absorption at 1309–1317 cm−1, attributed to the pyrrole stretching. With laser excitation at 632.8 nm, Raman vibrations derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. In contrast, when excited with laser radiation of 785 nm, the ring radial vibrations of isoindole moieties and dihedral plane deformations between 500 and 1000 cm−1 for M(Pc)[Pc(α-OC5H11)4] intensify to become the strongest scatterings. Both techniques reveal that the frequencies of pyrrole stretching, isoindole breathing, isoindole stretchings, aza stretchings and coupling of pyrrole and aza stretchings depend on the rare earth ionic size, shifting to higher energy along with the lanthanide contraction due to the increased ring-ring interaction across the series. The assignments of the vibrational bands for these compounds have been made and discussed in relation to other unsubstituted and substituted bis(phthalocyaninato) rare earth analogues, such as M(Pc)2 and M(OOPc)2 [H2OOPc = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine].
Resumo:
We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.
Resumo:
Quantitative behaviour analysis requires the classification of behaviour to produce the basic data. In practice, much of this work will be performed by multiple observers, and maximising inter-observer consistency is of particular importance. Another discipline where consistency in classification is vital is biological taxonomy. A classification tool of great utility, the binary key, is designed to simplify the classification decision process and ensure consistent identification of proper categories. We show how this same decision-making tool - the binary key - can be used to promote consistency in the classification of behaviour. The construction of a binary key also ensures that the categories in which behaviour is classified are complete and non-overlapping. We discuss the general principles of design of binary keys, and illustrate their construction and use with a practical example from education research.
Resumo:
Thirty-five clients who had received counselling completed a letter to a friend describing in as much detail as possible what they had learned from counselling. The participants' written responses were analysed and classified using the Structure of Learning Outcomes (SOLO) taxonomy. The results suggested that an expanded SOLO offers a promising and exciting way to view the outcomes of counselling within a learning framework. If the SOLO taxonomy is found to be stable in subsequent research, and clients are easily able to be classified using the taxonomy, then this approach may have implications for the process of counselling. To maximise the learning outcomes, counsellors could use strategies and techniques to enhance their clients' learning.