4 resultados para MODIS-NDVI
em Queensland University of Technology - ePrints Archive
Resumo:
Key resource areas (KRAs), defined as dry season foraging zones for herbivores, were studied relative to the more extensive outlying rangeland areas (non-KRAs) in Kenya. Field surveys with pastoralists, ranchers, scientists and government officials delineated KRAs on the ground. Identified KRAs were mapped based on global positioning and local experts' information on KRAs accessibility and ecological attributes. Using the map of known KRAs and non-KRAs, we examined characteristics of soils, climate, topography, land use/cover attributes at KRAs relative to non-KRAs. How and why do some areas (KRAs) support herbivores during droughts when forage is scarce in other areas of the landscape? We hypothesized that KRAs have fundamental ecological and socially determined attributes that enable them to provide forage during critical times and we sought to characterize some of those attributes in this study. At the landscape level, KRAs took different forms based on forage availability during the dry season but generally occurred in locations of the landscape with aseasonal water availability and/or difficult to access areas during wet season forage abundance. Greenness trends for KRAs versus non-KRAs were evaluated with a 22-year dataset of Normalized Difference Vegetation Index (NDVI). Field surveys of KRAs provided qualitative information on KRAs as dry season foraging zones. At the scale of the study, soil attributes did not significantly differ for KRAs compared to non-KRAs. Slopes of KRA were generally steeper compared to non-KRAs and elevation was higher at KRAs. Field survey respondents indicated that animals and humans generally avoid difficult to access hilly areas using them only when all other easily accessible rangeland is depleted of forage during droughts. Understanding the nature of KRAs will support identification, protection and restoration of critical forage hotspots for herbivores by strengthening rangeland inventory, monitoring, policy formulation, and conservation efforts to improve habitats and human welfare. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Despite research that has been conducted elsewhere, little is known, to-date, about land cover dynamics and their impacts on land surface temperature (LST) in fast growing mega cities of developing countries. Landsat satellite images of 1989, 1999, and 2009 of Dhaka Metropolitan (DMP) area were used for analysis. This study first identified patterns of land cover changes between the periods and investigated their impacts on LST; second, applied artificial neural network to simulate land cover changes for 2019 and 2029; and finally, estimated their impacts on LST in respective periods. Simulation results show that if the current trend continues, 56% and 87% of the DMP area will likely to experience temperatures in the range of greater than or equal to 30°C in 2019 and 2029, respectively. The findings possess a major challenge for urban planners working in similar contexts. However, the technique presented in this paper would help them to quantify the impacts of different scenarios (e.g., vegetation loss to accommodate urban growth) on LST and consequently to devise appropriate policy measures.
Resumo:
Flood extent mapping is a basic tool for flood damage assessment, which can be done by digital classification techniques using satellite imageries, including the data recorded by radar and optical sensors. However, converting the data into the information we need is not a straightforward task. One of the great challenges involved in the data interpretation is to separate the permanent water bodies and flooding regions, including both the fully inundated areas and the wet areas where trees and houses are partly covered with water. This paper adopts the decision fusion technique to combine the mapping results from radar data and the NDVI data derived from optical data. An improved capacity in terms of identifying the permanent or semi-permanent water bodies from flood inundated areas has been achieved. Computer software tools Multispec and Matlab were used.
Resumo:
The most difficult operation in flood inundation mapping using optical flood images is to map the ‘wet’ areas where trees and houses are partly covered by water. This can be referred to as a typical problem of the presence of mixed pixels in the images. A number of automatic information extracting image classification algorithms have been developed over the years for flood mapping using optical remote sensing images, with most labelling a pixel as a particular class. However, they often fail to generate reliable flood inundation mapping because of the presence of mixed pixels in the images. To solve this problem, spectral unmixing methods have been developed. In this thesis, methods for selecting endmembers and the method to model the primary classes for unmixing, the two most important issues in spectral unmixing, are investigated. We conduct comparative studies of three typical spectral unmixing algorithms, Partial Constrained Linear Spectral unmixing, Multiple Endmember Selection Mixture Analysis and spectral unmixing using the Extended Support Vector Machine method. They are analysed and assessed by error analysis in flood mapping using MODIS, Landsat and World View-2 images. The Conventional Root Mean Square Error Assessment is applied to obtain errors for estimated fractions of each primary class. Moreover, a newly developed Fuzzy Error Matrix is used to obtain a clear picture of error distributions at the pixel level. This thesis shows that the Extended Support Vector Machine method is able to provide a more reliable estimation of fractional abundances and allows the use of a complete set of training samples to model a defined pure class. Furthermore, it can be applied to analysis of both pure and mixed pixels to provide integrated hard-soft classification results. Our research also identifies and explores a serious drawback in relation to endmember selections in current spectral unmixing methods which apply fixed sets of endmember classes or pure classes for mixture analysis of every pixel in an entire image. However, as it is not accurate to assume that every pixel in an image must contain all endmember classes, these methods usually cause an over-estimation of the fractional abundances in a particular pixel. In this thesis, a subset of adaptive endmembers in every pixel is derived using the proposed methods to form an endmember index matrix. The experimental results show that using the pixel-dependent endmembers in unmixing significantly improves performance.