51 resultados para MEMBRANE-PROTEINS
em Queensland University of Technology - ePrints Archive
Resumo:
As proteins within cells are spatially organized according to their role, knowledge about protein localization gives insight into protein function. Here, we describe the LOPIT technique (localization of organelle proteins by isotope tagging) developed for the simultaneous and confident determination of the steady-state distribution of hundreds of integral membrane proteins within organelles. The technique uses a partial membrane fractionation strategy in conjunction with quantitative proteomics. Localization of proteins is achieved by measuring their distribution pattern across the density gradient using amine-reactive isotope tagging and comparing these patterns with those of known organelle residents. LOPIT relies on the assumption that proteins belonging to the same organelle will co-fractionate. Multivariate statistical tools are then used to group proteins according to the similarities in their distributions, and hence localization without complete centrifugal separation is achieved. The protocol requires approximately 3 weeks to complete and can be applied in a high-throughput manner to material from many varied sources.
Resumo:
In eukaryotes, numerous complex sub-cellular structures exist. The majority of these are delineated by membranes. Many proteins are trafficked to these in order to be able to carry out their correct physiological function. Assigning the sub-cellular location of a protein is of paramount importance to biologists in the elucidation of its role and in the refinement of knowledge of cellular processes by tracing certain activities to specific organelles. Membrane proteins are a key set of proteins as these form part of the boundary of the organelles and represent many important functions such as transporters, receptors, and trafficking. They are, however, some of the most challenging proteins to work with due to poor solubility, a wide concentration range within the cell and inaccessibility to many of the tools employed in proteomics studies. This review focuses on membrane proteins with particular emphasis on sub-cellular localization in terms of methodologies that can be used to determine the accurate location of membrane proteins to organelles. We also discuss what is known about the membrane protein cohorts of major organelles.
Resumo:
The 15 members of the kallikrein-related serine peptidase (KLK) family have diverse tissue-specific expression profiles and roles in a range of cellular processes, including proliferation, migration, invasion, differentiation, inflammation and angiogenesis that are required in both normal physiology as well as pathological conditions. These roles require cleavage of a range of substrates, including extracellular matrix proteins, growth factors, cytokines as well as other proteinases. In addition, it has been clear since the earliest days of KLK research that cleavage of cell surface substrates is also essential in a range of KLK-mediated cellular processes where these peptidases are essentially acting as agonists and antagonists. In this review we focus on these KLK-regulated cell surface receptor systems including bradykinin receptors, proteinase-activated receptors, as well as the plasminogen activator, ephrins and their receptors, and hepatocyte growth factor/Met receptor systems and other plasma membrane proteins. From this analysis it is clear that in many physiological and pathological settings KLKs have the potential to regulate multiple receptor systems simultaneously; an important issue when these peptidases and substrates are targeted in disease.
Resumo:
Membrane proteins play important roles in many biochemical processes and are also attractive targets of drug discovery for various diseases. The elucidation of membrane protein types provides clues for understanding the structure and function of proteins. Recently we developed a novel system for predicting protein subnuclear localizations. In this paper, we propose a simplified version of our system for predicting membrane protein types directly from primary protein structures, which incorporates amino acid classifications and physicochemical properties into a general form of pseudo-amino acid composition. In this simplified system, we will design a two-stage multi-class support vector machine combined with a two-step optimal feature selection process, which proves very effective in our experiments. The performance of the present method is evaluated on two benchmark datasets consisting of five types of membrane proteins. The overall accuracies of prediction for five types are 93.25% and 96.61% via the jackknife test and independent dataset test, respectively. These results indicate that our method is effective and valuable for predicting membrane protein types. A web server for the proposed method is available at http://www.juemengt.com/jcc/memty_page.php
Resumo:
The membrane-bound ceruloplasmin homolog hephaestin plays a critical role in intestinal iron absorption. The aims of this study were to clone the rat hephaestin gene and to examine its expression in the gastrointestinal tract in relation to other genes encoding iron transport proteins. The rat hephaestin gene was isolated from intestinal mRNA and was found to encode a protein 96% identical to mouse hephaestin. Analysis by ribonuclease protection assay and Western blotting showed that hephaestin was expressed at high levels throughout the small intestine and colon. Immunofluorescence localized the hephaestin protein to the mature villus enterocytes with little or no expression in the crypts. Variations in iron status had a small but nonsignificant effect on hephaestin expression in the duodenum. The high sequence conservation between rat and mouse hephaestin is consistent with this protein playing a central role in intestinal iron absorption, although its precise function remains to be determined.
Resumo:
Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2′116′312bp chromosome and a 15′593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae.
Resumo:
Once melanoma metastasizes, no effective treatment modalities prolong survival in most patients. This notorious refractoriness to therapy challenges investigators to identify agents that overcome melanoma resistance to apoptosis. Whereas many survival pathways contribute to the death-defying phenotype in melanoma, a defect in apoptotic machinery previously highlighted inactivation of Apaf-1, an apoptosome component engaged after mitochondrial damage. During studies involving Notch signaling in melanoma, we observed a gamma-secretase tripeptide inhibitor (GSI; z-Leu-Leu-Nle-CHO), selected from a group of compounds originally used in Alzheimer's disease, induced apoptosis in nine of nine melanoma lines. GSI only induced G2-M growth arrest (but not killing) in five of five normal melanocyte cultures tested. Effective killing of melanoma cells by GSI involved new protein synthesis and a mitochondrial-based pathway mediated by up-regulation of BH3-only members (Bim and NOXA). p53 activation was not necessary for up-regulation of NOXA in melanoma cells. Blocking GSI-induced NOXA using an antisense (but not control) oligonucleotide significantly reduced the apoptotic response. GSI also killed melanoma cell lines with low Apaf-1 levels. We conclude that GSI is highly effective in killing melanoma cells while sparing normal melanocytes. Direct enhancement of BH3-only proteins executes an apoptotic program overcoming resistance of this lethal tumor. Identification of a p53-independent apoptotic pathway in melanoma cells, including cells with low Apaf-1, bypasses an impediment to current cytotoxic therapy and provides new targets for future therapeutic trials involving chemoresistant tumors.
Resumo:
Ubiquitylation is a necessary step in the endocytosis and lysosomal trafficking of many plasma membrane proteins and can also influence protein trafficking in the biosynthetic pathway. Although a molecular understanding of ubiquitylation in these processes is beginning to emerge, very little is known about the role deubiquitylation may play. Fat Facets in mouse (FAM) is substrate-specific deubiquitylating enzyme highly expressed in epithelia where it interacts with its substrate, β-catenin. Here we show, in the polarized intestinal epithelial cell line T84, FAM localized to multiple points of protein trafficking. FAM interacted with β-catenin and E-cadherin in T84 cells but only in subconfluent cultures. FAM extensively colocalized with β-catenin in cytoplasmic puncta but not at sites of cell-cell contact as well as immunoprecipitating with β-catenin and E-cadherin from a higher molecular weight complex (~500 kDa). At confluence FAM neither colocalized with, nor immunoprecipitated, β-catenin or E-cadherin, which were predominantly in a larger molecular weight complex (~2 MDa) at the cell surface. Overexpression of FAM in MCF-7 epithelial cells resulted in increased β-catenin levels, which localized to the plasma membrane. Expression of E-cadherin in L-cell fibroblasts resulted in the relocalization of FAM from the Golgi to cytoplasmic puncta. These data strongly suggest that FAM associates with E-cadherin and β-catenin during trafficking to the plasma membrane.
Resumo:
Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks. © 2012 American Physical Society.
Resumo:
Chlamydia trachomatis infections of the male and female reproductive tracts are the world's leading sexually transmitted bacterial disease, and can lead to damaging pathology, scarring and infertility. The resolution of chlamydial infection requires the development of adaptive immune responses to infection, and includes cell-mediated and humoral immunity. Whilst cluster of differentiation (CD)4+ T cells are known to be essential in clearance of infection [1], they are also associated with immune cell infiltration, autoimmunity and infertility in the testes [2-3]. Conversely, antibodies are less associated with inflammation, are readily transported into the reproductive tracts, and can offer lumenal neutralization of chlamydiae prior to infection. Antibodies, or immunoglobulins (Ig), play a supportive role in the resolution of chlamydial infections, and this thesis sought to define the function of IgA and IgG, against a variety of chlamydial antigens expressed during the intracellular and extracellular stages of the chlamydial developmental cycle. Transport of IgA and IgG into the mucosal lumen is facilitated by receptor-mediated transcytosis yet the expression profile (under normal conditions and during urogenital chlamydial infection) of the polymeric immunoglobulin receptor (pIgR) and the neonatal Fc receptor (FcRn) remains unknown. The expression profile of pIgR and FcRn in the murine male reproductive tract was found to be polarized to the lower and upper reproductive tract tissues respectively. This demonstrates that the two receptors have a tissue tropism, which must be considered when targeting pathogens that colonize different sites. In contrast, the expression of pIgR and FcRn in the female mouse was found to be distributed in both the upper and lower reproductive tracts. When urogenitally infected with Chlamydia muridarum, both male and female reproductive tracts up-regulated expression of pIgR and down-regulated expression of FcRn. Unsurprisingly, the up-regulation of pIgR increased the concentration of IgA in the lumen. However, down-regulation of FcRn, prevented IgG uptake and led to an increase or pooling of IgG in lumenal secretions. As previous studies have identified the importance of pIgR-mediated delivery of IgA, as well as the potential of IgA to bind and neutralize intracellular pathogens, IgA against a variety of chlamydial antigens was investigated. The protection afforded by IgA against the extracellular antigen major outer membrane protein (MOMP), was found to be dependent on pIgR expression in vitro and in vivo. It was also found that in the absence of pIgR, no protection was afforded to mice previously immunized with MOMP. The protection afforded from polyclonal IgA against the intracellular chlamydial antigens; inclusion membrane protein A (IncA), inclusion membrane proteins (IncMem) and secreted chlamydial protease-like activity factor (CPAF) were produced and investigated in vitro. Antigen-specific intracellular IgA was found to bind to the respective antigen within the infected cell, but did not significantly reduce inclusion formation (p > 0.05). This suggests that whilst IgA specific for the selected antigens was transported by pIgR to the chlamydial inclusion, it was unable to prevent growth. Similarly, immunization of male mice with intracellular chlamydial antigens (IncA or IncMem), followed by depletion CD4+ T cells, and subsequent urogenital C. muridarum challenge, provided minimal pIgR-mediated protection. Wild type male mice immunized with IncA showed a 57 % reduction (p < 0.05), and mice deficient in pIgR showed a 35 % reduction (p < 0.05) in reproductive tract chlamydial burden compared to control antigen, and in the absence of CD4+ T cells. This suggests that pIgR and secretory IgA (SIgA) were playing a protective role (21 % pIgR-mediated) in unison with another antigen-specific immune mechanism (36 %). Interestingly, IgA generated during a primary respiratory C. muridarum infection did not provide a significant amount of protection to secondary urogenital C. muridarum challenge. Together, these data suggest that IgA specific for an extracellular antigen (MOMP) can play a strong protective role in chlamydial infections, and that IgA targeting intracellular antigens is also effective but dependent on pIgR expression in tissues. However, whilst not investigated here, IgA targeting and blocking other intracellular chlamydial antigens, that are more essential for replication or type III secretion, may be more efficacious in subunit vaccines. Recently, studies have demonstrated that IgG can neutralize influenza virus by trafficking IgG-bound virus to lysosomes [4]. We sought to determine if this process could also traffic chlamydial antigens for degradation by lysosomes, despite Chlamydia spp. actively inhibiting fusion with the host endocytic pathway. As observed in pIgR-mediated delivery of anti-IncA IgA, FcRn similarly transported IgG specific for IncA which bound the inclusion membrane. Interestingly, FcRn-mediated delivery of anti-IncA IgG significantly decreased inclusion formation by 36 % (p < 0.01), and induced aberrant inclusion morphology. This suggests that unlike IgA, IgG can facilitate additional host cellular responses which affect the intracellular niche of chlamydial growth. Fluorescence microscopy revealed that IgG also bound the inclusion, but unlike influenza studies, did not induce the recruitment of lysosomes. Notably, anti-IncA IgG recruited sequestosomes to the inclusion membrane, markers of the ubiquitin/proteasome pathway and major histocompatibility complex (MHC) class I loading. To determine if the protection against C. muridarum infection afforded by IncA IgG in vitro translated in vivo, wild type mice and mice deficient in functional FcRn and MHC-I, were immunized, depleted of CD4+, and urogenitally infected with C. muridarum. Unlike in pIgR-deficient mice, the protection afforded from IncA immunization was completely abrogated in mice lacking functional FcRn and MHC-I/CD8+. Thus, both anti-IncA IgA and IgG can bind the inclusion in a pIgR and FcRn-mediated manner, respectively. However, only IgG mediates a higher reduction in chlamydial infection in vitro and in vivo suggesting more than steric blocking of IncA had occurred. Unlike anti-MOMP IgA, which reduced chlamydial infection of epithelial cells and male mouse tissues, IgG was found to enhance infectivity in vitro, and in vivo. Opsonization of EBs with MOMP-IgG enhanced inclusion formation of epithelial cells in a MOMP-IgG dose-dependent and FcRn-dependent manner. When MOMP-IgG opsonized EBs were inoculated into the vagina of female mice, a small but non-significant (p > 0.05) enhancement of cervicovaginal C. muridarum shedding was observed three days post infection in mice with functional FcRn. Interestingly, infection with opsonized EBs reduced the intensity of the peak of infection (day six) but protracted the duration of infection by 60 % in wild type mice only. Infection with EBs opsonized in IgG also significantly increased (p < 0.05) hydrosalpinx formation in the oviducts and induced lymphocyte infiltration uterine horns. As MOMP is an immunodominant antigen, and is widely used in vaccines, the ability of IgG specific to extracellular chlamydial antigens to enhance infection and induce pathology needs to be considered. Together, these data suggest that immunoglobulins play a dichotomous role in chlamydial infections, and are dependent on antigen specificity, FcRn and pIgR expression. FcRn was found to be highly expressed in upper male reproductive tract, whilst pIgR was dominantly expressed in the lower reproductive tract. Conversely, female mice expressed FcRn and pIgR in both the lower and upper reproductive tracts. In response to a normal chlamydial infection, pIgR is up-regulated increasing secretory IgA release, but FcRn is down-regulated preventing IgG uptake. Similarly to other studies [5-6], we demonstrate that IgA and IgG generated during primary chlamydial infections plays a minor role in recall immunity, and that antigen-specific subunit vaccines can offer more protection. We also show that both IgA and IgG can be used to target intracellular chlamydial antigens, but that IgG is more effective. Finally, IgA against the extracellular antigen MOMP can afford protection, whist IgG plays a deleterious role by increasing infectivity and inducing damaging immunopathology. Further investigations with additional antigens or combination subunit vaccines will enhance our understanding the protection afforded by antibodies against intracellular and extracellular pathogenic antigens, and help improve the development of an efficacious chlamydial vaccine.
Resumo:
Malignant mesothelioma (MM) is a fatal tumour of increasing incidence which is related to asbestos exposure. This work evaluated expression in MM of Epidermal Growth Factor Receptor (EGFR) by immunohistochemistry in 168 tumour sections and its correlations with clinicopathological and biological factors. The microvessel density (MVD) was derived from CD34 immunostained sections. Hematoxylin and eosin stained sections were examined for intratumoural necrosis. COX-2 protein expression was evaluated with semi-quantitative Western blotting of homogenised tumour supernatants (n = 45). EGFR expression was correlated with survival by Kaplan-Meier and log rank analysis. Univariate and multivariate Cox proportional hazards models were used to compare the effects of EGFR with clinicopathological and biological prognostic factors and prognostic scoring systems. EGFR expression was identified in 74 cases (44%) and correlated with epithelioid cell type (p < 0.0001), good performance status (p < 0.0001), the absence of chest pain (p < 0.0001) and the presence of TN (p = 0.004), but not MVD or COX-2. EGFR expression was a good prognostic factor in univariate analysis (p = 0.01). Independent indicators of poor prognosis in multivariate analysis were non-epithelioid cell type (p = 0.0001), weight loss, performance status and WBC > 8.3 × 10 9 L -1. EGFR status was not an independent prognostic factor. EGFR expression in MM correlates with epithelioid histology and TN. EGFR may be a target for selective therapies in MM. © 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Purpose: To investigate the expression pattern of hypoxia-induced proteins identified as being involved in malignant progression of head-and-neck squamous cell carcinoma (HNSCC) and to determine their relationship to tumor pO 2 and prognosis. Methods and Materials: We performed immunohistochemical staining of hypoxia-induced proteins (carbonic anhydrase IX [CA IX], BNIP3L, connective tissue growth factor, osteopontin, ephrin A1, hypoxia inducible gene-2, dihydrofolate reductase, galectin-1, IκB kinase β, and lysyl oxidase) on tumor tissue arrays of 101 HNSCC patients with pretreatment pO 2 measurements. Analysis of variance and Fisher's exact tests were used to evaluate the relationship between marker expression, tumor pO 2, and CA IX staining. Cox proportional hazard model and log-rank tests were used to determine the relationship between markers and prognosis. Results: Osteopontin expression correlated with tumor pO 2 (Eppendorf measurements) (p = 0.04). However, there was a strong correlation between lysyl oxidase, ephrin A1, and galectin-1 and CA IX staining. These markers also predicted for cancer-specific survival and overall survival on univariate analysis. A hypoxia score of 0-5 was assigned to each patient, on the basis of the presence of strong staining for these markers, whereby a higher score signifies increased marker expression. On multivariate analysis, increasing hypoxia score was an independent prognostic factor for cancer-specific survival (p = 0.015) and was borderline significant for overall survival (p = 0.057) when adjusted for other independent predictors of outcomes (hemoglobin and age). Conclusions: We identified a panel of hypoxia-related tissue markers that correlates with treatment outcomes in HNSCC. Validation of these markers will be needed to determine their utility in identifying patients for hypoxia-targeted therapy. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Several chronic infections known to be associated with malignancy have established oncogenic properties. However the existence of chronic inflammatory conditions that do not have an established infective cause and are associated with the development of tumours strongly suggests that the inflammatory process itself provides the prerequisite environment for the development of malignancy. This environment includes upregulation of mediators of the inflammatory response such as cyclo-oxygenase (COX)-2 leading to the production of inflammatory cytokines and prostaglandins which themselves may suppress cell mediated immune responses and promote angiogenesis. These factors may also impact on cell growth and survival signalling pathways resulting in induction of cell proliferation and inhibition of apoptosis. Furthermore, chronic inflammation may lead to the production of reactive oxygen species and metabolites such as malondialdehyde within the affected cells that may in turn induce DNA damage and mutations and, as a result, be carcinogenic. Here it is proposed that the conditions provided by a chronic inflammatory environment are so essential for the progression of the neoplastic process that therapeutic intervention aimed at inhibiting inflammation, reducing angiogenesis and stimulating cell mediated immune responses may have a major role in reducing the incidence of common cancers. © 2001 Cancer Research Campaign http://www.bjcancer.com.