4 resultados para Lucas, Blanche, 1874-1956
em Queensland University of Technology - ePrints Archive
Resumo:
In this paper we pursue the task of aligning an ensemble of images in an unsupervised manner. This task has been commonly referred to as “congealing” in literature. A form of congealing, using a least-squares criteria, has been recently demonstrated to have desirable properties over conventional congealing. Least-squares congealing can be viewed as an extension of the Lucas & Kanade (LK)image alignment algorithm. It is well understood that the alignment performance for the LK algorithm, when aligning a single image with another, is theoretically and empirically equivalent for additive and compositional warps. In this paper we: (i) demonstrate that this equivalence does not hold for the extended case of congealing, (ii) characterize the inherent drawbacks associated with least-squares congealing when dealing with large numbers of images, and (iii) propose a novel method for circumventing these limitations through the application of an inverse-compositional strategy that maintains the attractive properties of the original method while being able to handle very large numbers of images.
Resumo:
In this paper we propose a framework for both gradient descent image and object alignment in the Fourier domain. Our method centers upon the classical Lucas & Kanade (LK) algorithm where we represent the source and template/model in the complex 2D Fourier domain rather than in the spatial 2D domain. We refer to our approach as the Fourier LK (FLK) algorithm. The FLK formulation is advantageous when one pre-processes the source image and template/model with a bank of filters (e.g. oriented edges, Gabor, etc.) as: (i) it can handle substantial illumination variations, (ii) the inefficient pre-processing filter bank step can be subsumed within the FLK algorithm as a sparse diagonal weighting matrix, (iii) unlike traditional LK the computational cost is invariant to the number of filters and as a result far more efficient, and (iv) this approach can be extended to the inverse compositional form of the LK algorithm where nearly all steps (including Fourier transform and filter bank pre-processing) can be pre-computed leading to an extremely efficient and robust approach to gradient descent image matching. Further, these computational savings translate to non-rigid object alignment tasks that are considered extensions of the LK algorithm such as those found in Active Appearance Models (AAMs).
Resumo:
The performance of visual speech recognition (VSR) systems are significantly influenced by the accuracy of the visual front-end. The current state-of-the-art VSR systems use off-the-shelf face detectors such as Viola- Jones (VJ) which has limited reliability for changes in illumination and head poses. For a VSR system to perform well under these conditions, an accurate visual front end is required. This is an important problem to be solved in many practical implementations of audio visual speech recognition systems, for example in automotive environments for an efficient human-vehicle computer interface. In this paper, we re-examine the current state-of-the-art VSR by comparing off-the-shelf face detectors with the recently developed Fourier Lucas-Kanade (FLK) image alignment technique. A variety of image alignment and visual speech recognition experiments are performed on a clean dataset as well as with a challenging automotive audio-visual speech dataset. Our results indicate that the FLK image alignment technique can significantly outperform off-the shelf face detectors, but requires frequent fine-tuning.