27 resultados para Low water activity
em Queensland University of Technology - ePrints Archive
Resumo:
The phase relations have been investigated experimentally at 200 and 500 MPa as a function of water activity for one of the least evolved (Indian Batt Rhyolite) and of a more evolved rhyolite composition (Cougar Point Tuff XV) from the 12·8-8·1 Ma Bruneau-Jarbidge eruptive center of the Yellowstone hotspot. Particular priority was given to accurate determination of the water content of the quenched glasses using infrared spectroscopic techniques. Comparison of the composition of natural and experimentally synthesized phases confirms that high temperatures (>900°C) and extremely low melt water contents (<1·5 wt % H₂O) are required to reproduce the natural mineral assemblages. In melts containing 0·5-1·5 wt % H₂O, the liquidus phase is clinopyroxene (excluding Fe-Ti oxides, which are strongly dependent on fO₂), and the liquidus temperature of the more evolved Cougar Point Tuff sample (BJR; 940-1000°C) is at least 30°C lower than that of the Indian Batt Rhyolite lava sample (IBR2; 970-1030°C). For the composition BJR, the comparison of the compositions of the natural and experimental glasses indicates a pre-eruptive temperature of at least 900°C. The composition of clinopyroxene and pigeonite pairs can be reproduced only for water contents below 1·5 wt % H₂O at 900°C, or lower water contents if the temperature is higher. For the composition IBR2, a minimum temperature of 920°C is necessary to reproduce the main phases at 200 and 500 MPa. At 200 MPa, the pre-eruptive water content of the melt is constrained in the range 0·7-1·3 wt % at 950°C and 0·3-1·0 wt % at 1000°C. At 500 MPa, the pre-eruptive temperatures are slightly higher (by 30-50°C) for the same ranges of water concentration. The experimental results are used to explore possible proxies to constrain the depth of magma storage. The crystallization sequence of tectosilicates is strongly dependent on pressure between 200 and 500 MPa. In addition, the normative Qtz-Ab-Or contents of glasses quenched from melts coexisting with quartz, sanidine and plagioclase depend on pressure and melt water content, assuming that the normative Qtz and Ab/Or content of such melts is mainly dependent on pressure and water activity, respectively. The combination of results from the phase equilibria and from the composition of glasses indicates that the depth of magma storage for the IBR2 and BJR compositions may be in the range 300-400 MPa (13 km) and 200-300 MPa (10 km), respectively.
Resumo:
Over the past decade, plants have been used as expression hosts for the production of pharmaceutically important and commercially valuable proteins. Plants offer many advantages over other expression systems such as lower production costs, rapid scale up of production, similar post-translational modification as animals and the low likelihood of contamination with animal pathogens, microbial toxins or oncogenic sequences. However, improving recombinant protein yield remains one of the greatest challenges to molecular farming. In-Plant Activation (InPAct) is a newly developed technology that offers activatable and high-level expression of heterologous proteins in plants. InPAct vectors contain the geminivirus cis elements essential for rolling circle replication (RCR) and are arranged such that the gene of interest is only expressed in the presence of the cognate viral replication-associated protein (Rep). The expression of Rep in planta may be controlled by a tissue-specific, developmentally regulated or chemically inducible promoter such that heterologous protein accumulation can be spatially and temporally controlled. One of the challenges for the successful exploitation of InPAct technology is the control of Rep expression as even very low levels of this protein can reduce transformation efficiency, cause abnormal phenotypes and premature activation of the InPAct vector in regenerated plants. Tight regulation over transgene expression is also essential if expressing cytotoxic products. Unfortunately, many tissue-specific and inducible promoters are unsuitable for controlling expression of Rep due to low basal activity in the absence of inducer or in tissues other than the target tissue. This PhD aimed to control Rep activity through the production of single chain variable fragments (scFvs) specific to the motif III of Tobacco yellow dwarf virus (TbYDV) Rep. Due to the important role played by the conserved motif III in the RCR, it was postulated that such scFvs can be used to neutralise the activity of the low amount of Rep expressed from a “leaky” inducible promoter, thus preventing activation of the TbYDV-based InPAct vector until intentional induction. Such scFvs could also offer the potential to confer partial or complete resistance to TbYDV, and possibly heterologous viruses as motif III is conserved between geminiviruses. Studies were first undertaken to determine the levels of TbYDV Rep and TbYDV replication-associated protein A (RepA) required for optimal transgene expression from a TbYDV-based InPAct vector. Transient assays in a non-regenerable Nicotiana tabacum (NT-1) cell line were undertaken using a TbYDV-based InPAct vector containing the uidA reporter gene (encoding GUS) in combination with TbYDV Rep and RepA under the control of promoters with high (CaMV 35S) or low (Banana bunchy top virus DNA-R, BT1) activity. The replication enhancer protein of Tomato leaf curl begomovirus (ToLCV), REn, was also used in some co-bombardment experiments to examine whether RepA could be substituted by a replication enhancer from another geminivirus genus. GUS expression was observed both quantitatively and qualitatively by fluorometric and histochemical assays, respectively. GUS expression from the TbYDV-based InPAct vector was found to be greater when Rep was expected to be expressed at low levels (BT1 promoter) rather than high levels (35S promoter). GUS expression was further enhanced when Rep and RepA were co-bombarded with a low ratio of Rep to RepA. Substituting TbYDV RepA with ToLCV REn also enhanced GUS expression but more importantly highest GUS expression was observed when cells were co-transformed with expression vectors directing low levels of Rep and high levels of RepA irrespective of the level of REn. In this case, GUS expression was approximately 74-fold higher than that from a non-replicating vector. The use of different terminators, namely CaMV 35S and Nos terminators, in InPAct vectors was found to influence GUS expression. In the presence of Rep, GUS expression was greater using pInPActGUS-Nos rather than pInPActGUS-35S. The only instance of GUS expression being greater from vectors containing the 35S terminator was when comparing expression from cells transformed with Rep, RepA and REnexpressing vectors and either non-replicating vectors, p35SGS-Nos or p35SGS-35S. This difference was most likely caused by an interaction of viral replication proteins with each other and the terminators. These results indicated that (i) the level of replication associated proteins is critical to high transgene expression, (ii) the choice of terminator within the InPAct vector may affect expression levels and (iii) very low levels of Rep can activate InPAct vectors hence controlling its activity is critical. Prior to generating recombinant scFvs, a recombinant TbYDV Rep was produced in E. coli to act as a control to enable the screening for Rep-specific antibodies. A bacterial expression vector was constructed to express recombinant TbYDV Rep with an Nterminal His-tag (N-His-Rep). Despite investigating several purification techniques including Ni-NTA, anion exchange, hydrophobic interaction and size exclusion chromatography, N-His-Rep could only be partially purified using a Ni-NTA column under native conditions. Although it was not certain that this recombinant N-His-Rep had the same conformation as the native TbYDV Rep and was functional, results from an electromobility shift assay (EMSA) showed that N-His-Rep was able to interact with the TbYDV LIR and was, therefore, possibly functional. Two hybridoma cell lines from mice, immunised with a synthetic peptide containing the TbYDV Rep motif III amino acid sequence, were generated by GenScript (USA). Monoclonal antibodies secreted by the two hybridoma cell lines were first screened against denatured N-His-Rep in Western analysis. After demonstrating their ability to bind N-His-Rep, two scFvs (scFv1 and scFv2) were generated using a PCR-based approach. Whereas the variable heavy chain (VH) from both cell lines could be amplified, only the variable light chain (VL) from cell line 2 was amplified. As a result, scFv1 contained VH and VL from cell line 1, whereas scFv2 contained VH from cell line 2 and VL from cell line 1. Both scFvs were first expressed in E. coli in order to evaluate their affinity to the recombinant TbYDV N-His-Rep. The preliminary results demonstrated that both scFvs were able to bind to the denatured N-His-Rep. However, EMSAs revealed that only scFv2 was able to bind to native N-His-Rep and prevent it from interacting with the TbYDV LIR. Each scFv was cloned into plant expression vectors and co-bombarded into NT-1 cells with the TbYDV-based InPAct GUS expression vector and pBT1-Rep to examine whether the scFvs could prevent Rep from mediating RCR. Although it was expected that the addition of the scFvs would result in decreased GUS expression, GUS expression was found to slightly increase. This increase was even more pronounced when the scFvs were targeted to the cell nucleus by the inclusion of the Simian virus 40 large T antigen (SV40) nuclear localisation signal (NLS). It was postulated that the scFvs were binding to a proportion of Rep, leaving a small amount available to mediate RCR. The outcomes of this project provide evidence that very high levels of recombinant protein can theoretically be expressed using InPAct vectors with judicious selection and control of viral replication proteins. However, the question of whether the scFvs generated in this project have sufficient affinity for TbYDV Rep to prevent its activity in a stably transformed plant remains unknown. It may be that other scFvs with different combinations of VH and VL may have greater affinity for TbYDV Rep. Such scFvs, when expressed at high levels in planta, might also confer resistance to TbYDV and possibly heterologous geminiviruses.
Resumo:
Increased or fluctuating resources may facilitate opportunities for invasive exotic plants to dominate. This hypothesis does not, however, explain how invasive species succeed in regions characterized by low resource conditions or how these species persist in the lulls between high resource periods. We compare the growth of three co-occurring C4 perennial bunchgrasses under low resource conditions: an exotic grass, Eragrostis curvula (African lovegrass) and two native grasses, Themeda triandra and Eragrostis sororia. We grew each species over 12 weeks under low nutrients and three low water regimes differentiated by timing: continuous, pulsed, and mixed treatments (switched from continuous to pulsed and back to continuous). Over time, we measured germination rates, time to germination (first and second generations), height, root biomass, vegetative biomass, and reproductive biomass. Contrary to our expectations that the pulsed watering regime would favor the invader, water-supply treatments had little significant effect on plant growth. We did find inherent advantages in a suite of early colonization traits that likely favor African lovegrass over the natives including faster germination speed, earlier flowering times, faster growth rates and from 2 weeks onward it was taller. African lovegrass also showed similar growth allocation strategies to the native grasses in terms of biomass levels belowground, but produced more vegetative biomass than kangaroo grass. Overall our results suggest that even under low resource conditions invasive plant species like African lovegrass can grow similarly to native grasses, and for some key colonization traits, like germination rate, perform better than natives.
Resumo:
OBJECTIVES This study examined the associations between physical activity and other health behaviors in a representative sample of US adolescents. METHODS In the 1990 Youth Risk Behavior Survey, 11631 high school students provided information on physical activity; diet; substance use; and other negative health behaviors. Logistic regression analyses examined associations between physical activity and other health behaviors in a subset of 2652 high-active and 1641 low-active students. RESULTS Low activity was associated with cigarette smoking, marijuana use, lower fruit and vegetable consumption, greater television watching, failure to wear a seat belt, and low perception of academic performance. For consumption of fruit, television watching, and alcohol consumption, significant interactions were found with race/ethnicity or sex, suggesting that sociocultural factors may affect the relationships between physical activity and some health behaviors. CONCLUSIONS Low physical activity was associated with several other negative health behaviors in teenagers. Future studies should examine whether interventions for increasing physical activity in youth can be effective in reducing negative health behaviors.
Resumo:
The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty.
Resumo:
Sandy soils have low water and nutrient retention capabilities so that zeolite soil amendments are used for high value land uses including turf and horticulture to reduce leaching losses of NH4+ fertilisers. MesoLite is a zeolitic material made by caustic treatment of kaolin at 80-95oC. It has a moderately low surface area (9-12m2/g) and very high cation exchange capacity (494 cmol(+)/kg). Laboratory column experiments showed that an addition of 0.4% MesoLite to a sandy soil greatly (90%) reduced leaching of added NH4+ compared to an unamended soil and MesoLite is 11 times more efficient in retaining NH4+ than natural zeolite. Furthermore, NH4+-MesoLite slowly releases NH4+ to soil solution and is likely to be an effective slow release fertiliser.
Resumo:
Purpose: The aim was to document contact lens prescribing trends in Australia between 2000 and 2009. ---------- Methods: A survey of contact lens prescribing trends was conducted each year between 2000 and 2009. Australian optometrists were asked to provide information relating to 10 consecutive contact lens fittings between January and March each year. ---------- Results: Over the 10-year survey period, 1,462 practitioners returned survey forms representing a total of 13,721 contact lens fittings. The mean age (± SD) of lens wearers was 33.2 ± 13.6 years and 65 per cent were female. Between 2006 and 2009, rigid lens new fittings decreased from 18 to one per cent. Low water content lenses reduced from 11.5 to 3.2 per cent of soft lens fittings between 2000 and 2008. Between 2005 and 2009, toric lenses and multifocal lenses represented 26 and eight per cent, respectively, of all soft lenses fitted. Daily disposable, one- to two-week replacement and monthly replacement lenses accounted for 11.6, 30.0 and 46.5 per cent of all soft lens fittings over the survey period, respectively. The proportion of new soft fittings and refittings prescribed as extended wear has generally declined throughout the past decade. Multi-purpose lens care solutions dominate the market. Rigid lenses and monthly replacement soft lenses are predominantly worn on a full-time basis, whereas daily disposable soft lenses are mainly worn part-time.---------- Conclusions: This survey indicates that technological advances, such as the development of new lens materials, manufacturing methods and lens designs, and the availability of various lens replacement options, have had a significant impact on the contact lens market during the first decade of the 21st Century.
Resumo:
The link between measured sub-saturated hygroscopicity and cloud activation potential of secondary organic aerosol particles produced by the chamber photo-oxidation of α-pinene in the presence or absence of ammonium sulphate seed aerosol was investigated using two models of varying complexity. A simple single hygroscopicity parameter model and a more complex model (incorporating surface effects) were used to assess the detail required to predict the cloud condensation nucleus (CCN) activity from the subsaturated water uptake. Sub-saturated water uptake measured by three hygroscopicity tandem differential mobility analyser (HTDMA) instruments was used to determine the water activity for use in the models. The predicted CCN activity was compared to the measured CCN activation potential using a continuous flow CCN counter. Reconciliation using the more complex model formulation with measured cloud activation could be achieved widely different assumed surface tension behavior of the growing droplet; this was entirely determined by the instrument used as the source of water activity data. This unreliable derivation of the water activity as a function of solute concentration from sub-saturated hygroscopicity data indicates a limitation in the use of such data in predicting cloud condensation nucleus behavior of particles with a significant organic fraction. Similarly, the ability of the simpler single parameter model to predict cloud activation behaviour was dependent on the instrument used to measure sub-saturated hygroscopicity and the relative humidity used to provide the model input. However, agreement was observed for inorganic salt solution particles, which were measured by all instruments in agreement with theory. The difference in HTDMA data from validated and extensively used instruments means that it cannot be stated with certainty the detail required to predict the CCN activity from sub-saturated hygroscopicity. In order to narrow the gap between measurements of hygroscopic growth and CCN activity the processes involved must be understood and the instrumentation extensively quality assured. It is impossible to say from the results presented here due to the differences in HTDMA data whether: i) Surface tension suppression occurs ii) Bulk to surface partitioning is important iii) The water activity coefficient changes significantly as a function of the solute concentration.
Resumo:
Current urban development in South East Queensland (SEQ) is impacted by a number of factors: growth and sprawl eroding subtropical character and identity; changing demographics and housing needs; lack of developable land; rising transport costs; diminishing fresh water supply; high energy consumption; and generic building designs which ignore local climate, landscape and lifestyle conditions. The Subtropical Row House project sought to research ‘best practice’ planning and design for contemporary and future needs for urban development in SEQ, and stimulate higher-density housing responses that achieve sustainable, low-energy and low water outcomes and support subtropical character and identity by developing a workable new typology for homes that the local market can adopt. The methodology was that of charrette, an established methodology in architecture and design. Four leading Queensland architectural firms were invited to form multidisciplinary creative teams. During the two-day charrette, the teams visited a selected greenfield site, defined the problems and issues, developed ideas and solutions, and benchmarked performance of designs using the Australian Green Building Council’s Pilot Green Star Multi-Unit residential tool. Each of the four resulting designs simultaneously express a positive relationship with climate and place by demonstrating: suitability for the subtropical climate; flexibility for a diversity of households; integrated building/site/vegetation strategies; market appeal to occupants and developers; affordability in operation; constructability by ‘domestic’ builders; and reduced energy, water and wastage. The project was awarded a Regional Commendation by the Australian Institute of Architects.
Resumo:
Objectives We aimed to use simple clinical questions to group women and provide their specific rates of miscarriage, preterm delivery, and stillbirth for reference. Further, our purpose was to describe who has experienced particularly low or high rates of each event. Methods Data were collected as part of the Australian Longitudinal Study on Women's Health, a national prospective cohort. Reproductive histories were obtained from 5806 women aged 31–36 years in 2009, who had self-reported an outcome for one or more pregnancy. Age at first birth, number of live births, smoking status, fertility problems, use of in vitro fertilisation (IVF), education and physical activity were the variables that best separated women into groups for calculating the rates of miscarriage, preterm delivery, and stillbirth. Results Women reported 10,247 live births, 2544 miscarriages, 1113 preterm deliveries, and 113 stillbirths. Miscarriage was correlated with stillbirth (r = 0.09, P<0.001). The calculable rate of miscarriage ranged from 11.3 to 86.5 miscarriages per 100 live births. Women who had high rates of miscarriage typically had fewer live births, were more likely to smoke and were more likely to have tried unsuccessfully to conceive for ≥12 months. The highest proportion of live preterm delivery (32.2%) occurred in women who had one live birth, had tried unsuccessfully to conceive for ≥12 months, had used IVF, and had 12 years education or equivalent. Women aged 14–19.99 years at their first birth and reported low physical activity had 38.9 stillbirths per 1000 live births, compared to the lowest rate at 5.5 per 1000 live births. Conclusion Different groups of women experience vastly different rates of each adverse pregnancy event. We have used simple questions and established reference data that will stratify women into low- and high-rate groups, which may be useful in counselling those who have experienced miscarriage, preterm delivery, or stillbirth, plus women with fertility intent.
Resumo:
Vesicular and groundmass phyllosilicates in a hydrothermally altered basalt from the Point Sal ophiolite, California, have been studied using transmission electron microscopy (TEM). Pore-filling phyllosilicates are texturally characterized as having coherent, relatively thick and defect-free crystals of chlorite (14 Å) with occasional 24-Å periodicities. Groundmass phyllosilicates are texturally characterized as 1) randomly oriented crystals up to 200 Å in width and 2) larger, more coherent crystals up to 1000 Å in width. Small crystallites contain predominantly 14-Å layers with some 24-Å units. Large crystals show randomly interlayered chlorite/smectite (C/S), with approximately 50% chlorite on average. Adjacent smectite-like layers are not uncommon in the groundmass phyllosilicates. Electron microprobe analyses show that Fe/Mg ratios of both groundmass and vesicular phyllosilicates are fairly constant. Termination of brucite-like interlayers has been identified in some of the TEM images. The transformation mechanisms represented by these layer terminations are 1) growth of a brucite-like interlayer within smectite interlayer regions and 2) the dissolution and reprecipitation of elements to form chlorite layers. Both mechanisms require an increase in volume as smectite transforms to chlorite. The data, combined with that from previously published reports, suggest that randomly interlayered C/S is a metastable phase formed in microenvironments with low water/rock ratios. Chlorite forms in microenvironments in the same sample dominated by higher water/rock ratios. The relatively constant number of Mg's in the structure (Mg#) of both structures indicates that in both microenvironments the bulk rock composition has influence over the composition of phyllosilicates.
Resumo:
Background Corneal oedema is a common post-operative problem that delays or prevents visual recovery from ocular surgery. Honey is a supersaturated solution of sugars with an acidic pH, high osmolarity and low water content. These characteristics inhibit the growth of micro-organisms, reduce oedema and promote epithelialisation. This clinical case series describes the use of a regulatory approved Leptospermum species honey ophthalmic product, in the management of post-operative corneal oedema and bullous keratopathy. Methods A retrospective review of 18 consecutive cases (30 eyes) with corneal oedema persisting beyond one month after single or multiple ocular surgical procedures (phacoemulsification cataract surgery and additional procedures) treated with Optimel Antibacterial Manuka Eye Drops twice to three times daily as an adjunctive therapy to conventional topical management with corticosteroid, aqueous suppressants, hypertonic sodium chloride five per cent, eyelid hygiene and artificial tears. Visual acuity and central corneal thickness were measured before and at the conclusion of Optimel treatment. Results A temporary reduction in corneal epithelial oedema lasting up to several hours was observed after the initial Optimel instillation and was associated with a reduction in central corneal thickness, resolution of epithelial microcysts, collapse of epithelial bullae, improved corneal clarity, improved visualisation of the intraocular structures and improved visual acuity. Additionally, with chronic use, reduction in punctate epitheliopathy, reduction in central corneal thickness and improvement in visual acuity were achieved. Temporary stinging after Optimel instillation was experienced. No adverse infectious or inflammatory events occurred during treatment with Optimel. Conclusions Optimel was a safe and effective adjunctive therapeutic strategy in the management of persistent post-operative corneal oedema and warrants further investigation in clinical trials.
Resumo:
Scales provide optical disguise, low water drag and mechanical protection to fish, enabling them to survive catastrophic environmental disasters, predators and microorganisms. The unique structures and stacking sequences of fish scales inspired the fabrication of artificial nanostructures with salient optical, interfacial and mechanical properties. Herein, we describe fish-scale bio-inspired multifunctional ZnO nanostructures that have similar morphology and structure to the cycloid scales of the Asian Arowana. These nanostructured coatings feature tunable light refraction and reflection, modulated surface wettability and damage-tolerant mechanical properties. The salient properties of these multifunctional nanostructures are promising for applications in: - (i) optical coatings, sensing or lens arrays for use in reflective displays, packing, advertising and solar energy harvesting; - (ii) self-cleaning surfaces, including anti-smudge, anti-fouling and anti-fogging, and self-sterilizing surfaces, and; - (iii) mechanical/chemical barrier coatings. This study provides a low-cost and large-scale production method for the facile fabrication of these bio-inspired nanostructures and provides new insights for the development of novel functional materials for use in 'smart' structures and applications.
Resumo:
Objective The objectives of this cross-sectional, analytical inference analysis were to compare shoulder muscle activation at arm elevations of 0° to 90° through different movement planes and speeds during in-water and dry-land exercise and to extrapolate this information to a clinical rehabilitation model. Methods Six muscles of right-handed adult subjects (n = 16; males/females: 50%; age: 26.1 ± 4.5 years) were examined with surface electromyography during arm elevation in water and on dry land. Participants randomly performed 3 elevation movements (flexion, abduction, and scaption) through 0° to 90°. Three movement speeds were used for each movement as determined by a metronome (30°/sec, 45°/sec, and 90°/sec). Dry-land maximal voluntary contraction tests were used to determine movement normalization. Results Muscle activity levels were significantly lower in water compared with dry land at 30°/sec and 45°/sec but significantly higher at 90°/sec. This sequential progressive activation with increased movement speed was proportionally higher on transition from gravity-based on-land activity to water-based isokinetic resistance. The pectoralis major and latissimus dorsi muscles showed higher activity during abduction and scaption. Conclusions These findings on muscle activation suggest protocols in which active flexion is introduced first at low speeds (30°/sec) in water, then at medium speeds (45°/sec) in water or on dry land, and finally at high speeds (90°/sec) on dry land before in water. Abduction requires higher stabilization, necessitating its introduction after flexion, with scaption introduced last. This model of progressive sequential movement ensures that early active motion and then stabilization are appropriately introduced. This should reduce rehabilitation time and improve therapeutic goals without compromising patient safety or introducing inappropriate muscle recruitment or movement speed.